The NewTek Video Toaster Developer’s Handbook
. ©1995 by NewTek, Inc.
All Rights Reserved Worldwide.

_Revision 10/26/95
Compiled and Published by Daniel Wolf
for the
NewTek Developer Support Program

The contents are separately paginated stand-alone documents.
Disclaimer

I. NTSC and D2 Video

A. An NTSC Primer
B. CalcYIQ.c

IL. Video Toaster FX Development

A. NewTek Video Toaster FX Theory
Single Image Color Cycling Source/Encoder/Fade FX
4-Color Animated Source/Source FX
4-Color Kiki Source/Matte/Source Wipe FX
Multi-Color Smooth-edged Animated Wipe FX
FX Elements - CrUD Files, Amiga Graphics, and Effects (Crouton) Icons
FX Creation Environment and Tools - Examples

B. AlgoFX for the Video Toaster
Video Toaster DVE Theory
The AlgoTools Development System
Example and Include Files

111. Video Toaster CG and Color Font Development

A. CG 4.0 ARexx Documentation

Tentative Toaster CG ARexx Commands

CG Book Format Documentation

NewTek Video Toaster CG - Front-End Processor Specification
B. ColorFonts for the Video Toaster Character Generator

Creating ColorFonts

Using LightWave to Create the Original Image Set

IV. Editor/Switcher External Commands - ES Toaster Messaging System (EditSwit)
A. Flyer-Toaster ES Message Programming Example
B. EditSwit.i Include File

V. Toaster/Switcher ARexx Documentation

VL. Toaster/Flyer Project File Format

e— — e
() -_—
L — o

L

Disclaimer

Except as explicitly noted, the materials contained in this publication (NewTek Development
Conference Book and Disks) are Copyright 1995 by NewTek, Inc. All rights reserved worldwide.

No part of the copyrighted material contained in this publication may be reproduced or distributed ‘

without the express written permission of NewTek, Inc.

NewTek, Inc. provides these materials at its sole discretion to aid developers of third party
products which enhance and extend the capabilities of NewTek’s own products. NewTek, Inc.
maintains a policy of continuous improvement of its own products and therefore:

All documentation and specifications contained herein are subject to change without notice.

NewTek, Inc. provides these materials with no warranty or guarantee whatsoever.

To arrange for specific ongoing or updated support, please contact NewTek, Inc.

An NTSC Primer

by D. Wolf
7/4/95
NTSC = National Television Standards Committee PAL = Phase Alternating Line

NTSC color video adds color information to what was originally a monochrome video signal.
RCA proposed this method of encoding color at a resolution substantially lower than luminance
and adding that information to the luminance signal via quadrature phase modulation (4 possible
values of phase) of a specific frequency already within the luminance bandwidth.

The frequency of 3.57 mHz was chosen for the color subcarrier, which gets phase modulated with
color information.

Problems can arise. When a NTSC video signal happens to have luminance information at the
same frequency as is used for encoding color, false colors can be induced where none exist (seen
when closely spaced vertical stripes of luminance are broadcast - like a performer wearing a
striped tie or a football referee’s shirt). Likewise, when the color frequency isn’t (and almost
never is) perfectly extracted from the overall signal, information from the color process ’leaks’
into the luminance signal and appears as dot crawl. The following additional information about
NTSC (see the phase reversal discussion on successive fields and lines below) should clarify why
the dot crawl looks like it does.

Here are some NTSC fundamentals.
¥ Definition of Luminance:

Y =92.5 IRE ’Gray’ (White)
(1) Y=.30*R+.59*G +.11*B
Color might have been expressed as R-Y and B-Y, but they’re a bit different for reasons of
transmission and encoding efficiency. Color signals are expressed as I and Q and they are related
to R-Y and B-Y as follows.

*** Definition of Color I and Q: Quadrature Modulation

(2) Y-Axisis (R-Y)scaledby 1/1.14=.877
(3) X-Axisis (B-Y)scaledby 1/2.08 = .493

The Q-axis is 1 radian (57 degrees) clockwise from (R-Y)
The I-axis is 1 radian (57 degrees) clockwise from -(B-Y)

4) (R-Y)=1*R-.30*R-.59*G-.11*B = .70*R - .59*G - .11*B
(5) (B-Y)=1*B-.30*R-.59*G-.11*B =-.30*R - .59*G +.89*B

(6) cos(pi/2-1) = cos(33 deg) = .84147
(7) sin(pi/2-1) = sin(33 deg) = .54030

Successive pixels are samples of Y+I, Y+Q, Y-I, Y-Q as the color sampling rotates clockwise.
So, by applying equations (1) through (7), we obtain the equations for I and Q.

(1) Y =.30*R+.59*G+.11*B
(8) I =cos(pi/2-1)*.877*(R-Y) - sin(pi/2-1)*.493*(B-Y)
9 Q =sin(pi/2-1)*.877*(R-Y) + cos(pi/2-1)*.493*(B-Y)

.60*R - .28*G - .32*B
21*%R - .52*G + .31*B

1

Color phase on line 1 of Field 1 is 0 degrees: Y+I Y+Q Y-1'Y-Q. .. (1st pixel, 2nd pixel, etc.)
Color phase on line 1 of Field 2 is 180 degrees: Y-I1Y-Q Y+I Y+Q...
Color phase on line 1 of Field 3 is 180 degrees: Y-IY-Q Y+IY+Q...
Color phase on line 1 of Field 4 is O degrees: Y+l Y+Q Y-I1Y-Q...

Color signals are encoded as quadrature modulation of a 3.57 mHz phase added to the luminance
(monochrome) waveform. One complete cycle of the color subcarrier (3.57 mHz) has four
possible phase positions, either I, Q, -1, or -Q.

Since color is *added’ to the luminance, and D2 samples the NTSC waveform at 14.28 mHz (4x
the 3.57 mHz frequency), each successive sample catches a single color phase position.
Successive D2 samples are Y+I, Y+Q, etc. The specific ordering depends on which field is being
sampled; Fields 1 and 3 are in order of Y+I, Y+Q, Y-I, Y-Q (0 degrees color subcarrier reference
phase) and Fields 2 and 4 are in order of Y-I, Y-Q, Y+I, Y+Q (180 degrees color subcarrier
reference phase). NTSC essentially dithers the I and Q signals 1 pixel apart on successive lines of
two successive fields. On two successive fields (a NTSC frame), a specific line of the field has
opposite phases. On two successive frames, the phase reverses. NTSC thus dithers I and Q in
both space (line by line in a frame) and time (even and odd lines of a frame have reversed phases
in successive frames).

This should explain the why’s and wherefore’s of Toaster QUAD usage in digital warps and also
why the Flyer’s D2 ’live’ video comes in 2-frame (4-field) temporal chunks.

Here are the basic YIQ and RGB equations [see equations (1), (8), and (9), above]:
*** YIQ from RGB Coefficients

yr = .30
yg = .59
yb = .11
ir = .60
ig =-.28
ib =-32
g = .21
qg =-.52
gb = .31

+ YIQ from RGB

[YIQ]=[RGB] [yr ir qr

yg ig qg
yb ib gb]

Y =yr*fR +yg*G + yb*B
I =ir*fR +ig*G + ib*B
Q =qgr*R +qg*G + qb*B

Y =30R +.59G +.11B
I =.60R - .28G - .32B
Q =.21R - .52G +.31B

*** RGB from YIQ Coefficients

ry = 1.000

ri = .9483

rq = .6240

gy = 1.000

gi =-.2761

gq =-.3298

by = 1.000

bi =-1.1055

bq = 1.7299

*** RGB from YIQ

[RGB] =[YIQI [1y gy by
ri gi bi
1q gq bq]

R=ry*Y + ri*I +rq*Q

G=gy*Y +gi*l +89*Q
B=by*Y +bi*l +bq*Q

R=1.00*Y + .9483*I + .6240*Q
G=1.00*Y - .2761*1 - .6398*Q
B=1.00*Y -1.1055*I +1.7299*Q

References:

Code of Federal Regulations 47 - Part 73.682
Video Cameras: Theory and Servicing by Gerald R. McGinty (Howard W. Sams & Co, Inc.

Books, 1984)

CALCYIQ.C

[sk sk sk e sk sk ok ke ke ok st s sk sk e sk st sk s sk skeoke sk st sk e etk skesk

* *
* Converts a pixel quad into YIQ values *
* *

*************************************/

#include "exec/types.h"
#include "exec/memory.h"
#include <proto/dos.h>
#include "libraries/dos.h"
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

main(argc,argv)
int argc;
char **argv;
{
int pl,p2,p3,p4,Y,1Q;

if (arge!=5) {
printf("Usage: %ls <p> <p> <p> <p>\n",argv[0]);
exit(100);

}

stch_i(argv([1],&pl);
stch_i(argv(2],&p2);
stch_i(argv[3],&p3);
stch_i(argv[4],&p4);

Y =(pl +p2 + p3 + p4)/4;
I=((Y-pl)+(p3-Y))2,
Q=Y -p2) +(p4 - Y))2;

printf("Y=%Id, I=%1d, Q=%1d\n",Y,1,Q);

FXDox by Daniel Wolf © 1994 by NewTek
Started - November 15, 1994

Version - November 16, 1994

Version - November 28, 1994

Formatted to PageStream - December 1, 1994

NewTek Video Toaster FX Theory
The Video Toaster Pixel Switching and Fading Hardware

The basis of Toaster FX capabilities we’ll discuss resides in three video processing circuits on the
Toaster’s digital video board. Please refer to Figure 1, the Toaster Digital Video Block Diagram.
Two of these circuits (labelled AMUX and BMUX) are analog video source selectors (multiplexers)
for the third circuit, a two-source video mixer (labelled A/B FADER). Because the output of the A/B
Fader is the Toaster’s Main Video output, controlling the Fader is the key to Toaster video
processing. In this discussion, we’ll trace the Toaster’s Main output backwards and see how Toaster
circuitry can direct different video sources (Toaster inputs, Digital Stills, Amiga graphics, etc.) out to
Main. The heart of the Toaster’s video processing capabilities is the first stage "back’ from the Main
output line, the high speed digital fader (far right on the block diagram).

The Digitally-controlled Video Mixer/Fader

The Fader is always fed two analog video signals, from the AMUX and BMUX along with a 8-bit
binary control signal. The Fader can mix the A and B analog video inputs in 256 levels (dictated by
the 8-bit binary control signal) at very high speed. The fader can reset mixing level of A and B inputs
(i.e. it can respond to a change of value on 1ts 8-bit control signal lines) every 70 nanoseconds (ns).
That is fast enough to change A/B video mixing levels "on the fly’, pixel by pixel (about 768 pixels
on each line of video - roughly equivalent to Amiga HIRES video). The Fader can select either of its
inputs or a mixture of them and route that to the Main output on a pixel by pixel basis.

The Fader’s 8-bit (256-level) digital control signal sets its Sourcel/Source2 mix combination.
Sourcel and Source2 video can be any of the Toaster’s possible video signals, e.g. Video Input 1, 2,
3, or 4, or Toaster Digital Channels DV1, DV2, or DV3. If the Fader’s 8-bit digital level is O then the
Fader selects its Sourcel video input to go out to Main. If the Fader’s level control is set to 255 (its
maximum) then the Fader routes its Source2 video signal out to Main. If the digital control signal is
somewhere between 0 and 255 then the Main output is a combination of partly Sourcel and partly
Source2 video signals.

Fader Control Multiplexer

The Fader’s digital control values originate in the Fader Control Multiplexer (FCMUX on the block
diagram). Examine the FCMUX on the diagram (near the middle of the diagram) and you’ll see it
has 8 inputs: any of those 8 inputs to the FCMUX can be selected to govern the 256-level (8-bit)
fader control value. The inputs to the FCMUX which can provide the Fader’s digital control signal
have fairly cryptic names, so here’s a brief explanation.

FCMUX Inputs - Controllable Directly or by Amiga Pixel Colors

63mus CDAC REG - These are 8 bits which can directly feed through to the the Fader’s 8-bit control
lines. The CDAC can actually change the Fader’s 8-bitcontrol lines at a time resolution of 63
microseconds (one change of this setting per line since 62.5 microseconds is the duration of one
NTSC video line). The CDAC register is usually controlled by the user’s input to the T-bar on
the Switcher screen, though, only once per video field.

1

eV g gas_l_ ; / - _. RS — i
12 (o2 ,.El/ LR MUX 7 _.w>§ : ._ ~ DAC) oo VIDEO TOASTER
VID§ e
13 -3 élza ;) FIFO | [BRIGE DIGITAL VIDEO
o | A RAM — DACL [—ma | BL0CK DIAGRAM
DAU— VD e Daaied Wolf /854
ANCODAR weeet _\ \aﬁ m%w lﬁmﬁ %w%m ssl./ Copyright 1994 by NewTek
MONOCEROME =t |3 -
2 [%ﬂ| MU DIGITALLY CONTROLLED
m o 5]
¢ | KEY m ok RGQUADE = DACt — : /
ST pace [P 2800: BFFRCIS ERY NCODER = \F_l%
70 s PIXALSW ” MUX| MONOCHROMS et s Low MAIN
N 00 DG — - T |PASS iy
sswl/ MONOCEROMS Tons LIMERYA = @ s HHMI/ N
v —IMUX | A “ vIs—{MUX[Bax /
V1D e CHROMA| | 1\ | DIB VID4 e /;
DAC s @ .lmeoé m 63 23 CDAC RRG CD0-7 g 5 DA CQ e @
DAC = y LOMKEYA (D2 DAC! =i 3 | ATXKRY
ENCODER ==t a ENCODER— __ Er_ o 001
|_w\ = | | woiomae—" T
1K02 B0 MATTE | m
ap_s| FEY \oui—| GENERATOR 1.
witd) DACA E e - (A) ANALOG SWITCEH
ANALOG G i |
| ogs— ENCODER |}, oo (D) DIGITAL MULTIPLEXER

RGQUAD - These are 8 bits derived from the high bits of RED and GREEN Amiga color values of
four neighboring pixels (a *"QUAD’ of pixels) on the Amiga’s display (see DIGBR, below).

QUADVF - This is a single bit which is 1 if a QUAD is within a certain legal range of color values or
0if the QUAD of pixels is outside that range.

70ns PIXEL SWITCH - This is a single bit which is 1 when the Amiga’s genlock system detects that
the color on the Amiga’s display is a *genlock transparent’ color. On Amiga 2000, the only
"genlock transparent’ color possigility is the Amiga display’s background color (the zero color
in the Amiga’s display palette). On the Amiga 4000, the "genlock transparent” color can be any
single color in the Amiga’s display palette.

70ns LUMKEYA - This is a single bit which is 0 if the user-selected Toaster *Clip Level’ is below
the threshold for luminance keying transparency. This bit is a 1 when Toaster luminance keying
is actually active for a particular pixel.

70ns DG - This is a single bit derived from the high bit of the GREEN Amiga color value of a single
Amiga pixel (70ns Digital Green bit). It is a specific data line on the Amiga’s video slot (see
DIGBR, below).

DIB - This is a two bit signal derived from the Amiga’s digital video output. These are the two most
significant bits of the DIBGR signal described next.

DIBGR - This is a four bit signal which derives from the Amiga’s digital RGBI lines (present on the
23-pin RGB video connector and - most importantly for the Toaster - on the video slot!). Most
Amiga users view their Amiga displays as "analog RGB’ using a typical 1084 monitor. The
‘analog RGB’ on an A2000 provides up to 4096 different color values (Amiga ECS and pre-
ECS 12-bit color). The *analog RGB’ on an A4000 provides up to 16 million different colors.
The digital RGB signals, on the other hand, are quite limited in comparison and that’s why most
users never bother to view them. On an A2000, there are only 16 possible colors using the
Amiga’s digital RGB signals - 1 bit each of Red, Green, Blue, and "Intensity’ (8 colors, each
with bright and dim levels). The purpose for which the Digital RGB signals were originally
included in the Amiga design was to make the Amiga compatible with IBM/clone CGA-style
graphics monitors. That type of monitor did indeed have only Digital RGB color inputs and
displayed only 8 different colors (combinations of the R, G, and B digital bits) at two different
intensity levels (the I bit). The individual DIGBR (Digital Intensity, Green, Blue, and Red) bits
come from the high bits of an Amiga palette register’s RED, GREEN, and BLUE levels (which
themselves are 4 bits each on an Amiga 2000 and are 8 bits each on an Amiga 4000) as each
Amiga pixel goes by. These four bits of color information are the Toaster’s sole digital video
control inputs from the Amiga! The reason they are key to the Toaster’s capabilities is that the
Amiga updates these four bits of Amiga color information (meager as they are) at an extremely
rapid rate - namely every 70 nanoseconds! They provide the Toaster with digital information
about the Amiga’s display at precisely the correct rate to permit all the Toaster’s digital video
wizardry. The DIGBR is four bits of digital information which occurs every 70ns.

Note that on an Amiga 2000 there really are four individual bits named R, G, B, and I on the
video slot data lines, but on an A4000 there are more digital RGB data lines but no I data. The
Video Toaster works similarly on both the A2000 and A4000 and the names of control signals
on the A4000 Toaster have been kept from the older A2000 version, but the actual Amiga RGB
digital data lines used by Toaster 4000 circuitry may differ from those used by Toaster 2000
circuitry. For the purposes of this presentation there is no need to distinguish between them.

The Fader’s sources of level controls represent a wide variety of possibilities! All but one source of
the Fader level controls are derived from Amiga graphics in one way or another. The CDAC is the
only exception. Some of the Fader control sources are 8 bit values (like RGQUAD and CDAC)
which can drive the Fader’s full range of values. Other Fader control sources (like DIB, which is

2

only 2 bits of data) provide less "resolution’ of Fader source control. For example, the DIB is only
two bits of data and can only generate four levels of Fader action. The LUMKEYA is only a single
bit and therefore it can only tell the Fader to go 100% to its A source or 100% to its B source. The
number of Fader levels can’t exceed the possibilities provided by the FCMUX control source which
is currently selected. Suffice it to say, for now, that the Fader control sources mostly provide pixel-
by-pixel Fader level capability, but the selection of the Fader control source can only happen once for
each line of Toaster video. The Toaster’s software manipulation of Fader control source (selecting
]which source to the FCMUX is actually in use on any particular line of Toaster video) is discussed
ater.

Since there are 8 possible Fader control sources, it takes 3 bits of information (a 3-bit number, from 0
to 7) to select one of those eight possibilities for controlling the Fader’s levels. That numerical
selection value for the FCMUX comes from 3 digital bit lines called CDS0, CDS1, and CDS2
(CDSO0-2 on the block diagram).

In summary, the digitally controlled 70ns Fader is one of the key Toaster video processing elements.
The Fader can smoothly mix two sources of video on-the-fly. Fader video mixing levels are
themselves controlled by any of 8 different methods - mostly derived from actual Amiga graphics
displays.

Fader Video Input Sources - AMUX and BMUX

The Fader always has two analog video signal inputs, which it can smoothly and rapidly switch or
combine to create the Toaster’s Main video output. Both of these two video signal sources for the
Fader comes from a pair of switchable selectors (multiplexers or analog switches). These are
appropriately named the AMUX and BMUX (A multiplexer and B multiplexer). Like the FCMUX,
the AMUX and BMUX each have 8 different input sources which can be routed through to the Fader,
but the AMUX and BMUX input sources are single-line analog video signals, unlike the FCMUX
input sources which are multiple digital control bit lines. Here’s a list of the video signal sources
which can be routed through the A and B multiplexers.

VID1 -’live’ NTSC analog video input 1 to the Toaster
VID2 -’live’ NTSC analog video input 2 to the Toaster
VID3 -’live’ NTSC analog video input 3 to the Toaster
VID4 -’live’ NTSC analog video input 4 to the Toaster

DACO - video from the Toaster’s #1 Digital Video Bank (DV 1), after being converted into
NTSC analog video by the Toaster’s Digital to Analog converter (DAC) #0

DAC1 - video from the Toaster’s #2 Digital Video Bank (DV2), after being converted into
NTSC analog video by the Toaster’s Digital to Analog converter (DAC) #1

ENCODER - Amiga RGB graphics converted by the Toaster into NTSC analog video. See
the lower center portion of the block diagram and note the dotted-line region that
shows the Toaster’s circuitry for creating either a selectable background color
(MATTE GENERATOR) or Amiga RGB graphics converted to NTSC video by the
NTSC ENCODER.

MONOCHROME - A NTSC analog gray-scale video signal generated from any o the above
sources by a color-removal circuit within the Toaster. See the lower left part of the
block diagram and note the dotted-line region that the Toaster circuits which generates
monochrome and luminance keying signals from any of the above 7 possible analog
video sources.

3

AMUX and BMUX Input Selection - Controllable by Amiga Pixels

Each of the AMUX and BMUX can pass through any one of these 8 possible video signals to the
Fader. Like the FCMUX, a 3-bit digital quantity selects which of the 8 possible video signals goes
through each of the A and B multiplexers. Note the little AMUX and BMUX selector circuits on the
block diagram (just below and to the right of the AMUX and BMUX diagrams). Unlike the FCMUX,
which simply has CDS0-2 direct selector controls, the AMUX and BMUX have a more complicated
means of selecting which input gets passed through to the output (to the Fader). Again, 3 bits are
required to select one of the 8 AMUX or BMUX inputs, but AMUX and BMUX have another level
of control. These little control multiplexers allow multiple ways in which AMUX and BMUX inputs
can be selected to pass through to the Fader. The most important thing to notice here is that the little
AMUX and BMUX control multiplexers have a special capability - they can select an input on
AMUX or BMUX more or less directly (signals labelled AMO0-2 and BMO0-2, like the FCMUX’s
CDS0-2 selector lines) but IMPORTANT) the AMUX and BMUX can also let their input selection
be controlled by the Amiga’s B, G, and R bits! See the discussion on DIGBR and Amiga digital
color bits, above. Amiga pixel colors can control which video signal passes through the AMUX or
BMUX out to the Fader. Because the Amiga supplies new B, G, and R bits on EVERY PIXEL, the
decision about which video source to send to the Fader CAN CHANGE ON EVERY PIXEL!

Note that there are some limitations on combining effects modes because some of the same control
bits used for AMUX and BMUX source selection are also used to manipulate the Fader. On the
Amiga 2000 it is not practical to combine AMUX/BMUX and Fader control at all. On the Amiga
4000 the DIB control bits can indeed handle Fader control while other bits simultaneously interact
with AMUX/BMUX source selection - hence the wider range of more sophisticated Toaster effects
possible on the Amiga 4000.

Summary

The heart of the Video Toaster’s Digital Video Effects is the combination of two 8-source
multiplexers (AMUX and BMUX), each of which feeds a video signal to a fast, controllable Fader.
All three of these circuits can be controlled on-the-fly, pixel-by-pixel. The sources of video being
routed to the Fader’s inputs can change among 8 possibilities AND the Fader itself can arbitrarily mix
the two active sources - all at a temporal resolution of 70 nanoseconds. The Toaster’s Main video
output is a variable mixture of any two of eight possible video signals - both the mixture level and the
selection of which two of the eight source signals can vary pixel by pixel. The mixture level AND
the two sources can not only vary on a pixel-by-pixel basis, but the Amiga pixels’ color values can
provide all the control of both the video source selections and fader level.

When you combine this control flow design of the Video Toaster with the capability of the Amiga to
play hi-resolution animations (which change the pixel colors in an orderly way, video field by video
field, up to 60 times per second) you can see how the Toaster/Amiga combination leads to a real-time
(animated’) digital video processing and digital video effects system.

Designing FX
The Toaster is capable of dozens of types of digital video effects, generated by the interaction
between Amiga animations and the Toaster video signal flow control capabilities discusses above.
We'll limit this discussion to four of these myriad possibilities. First let’s think through some of the
options.

Terminology

Latch - selecting video sources to the Fader on the AMUX and BMUX

Alpha - a computer graphics term to describe variable transparency between two images, implies
Fader manipulation of variable levels of two video source images on the Toaster’s output

A

Key - avideo term implying overlay of one video image over another with the mixing level
(which portions of each image appear on the *keyed” combination) controlled by brightness
(luminance keying) or color (chroma keying) values in the two source images. ’Keying’ is
the video jargon analog of ’alpha’.

DIB - Dagital Intensity & Blue, two Amiga digital video bits used to control Toaster ’keying’
operations

Encoder - Video derived from electronically converting Amiga RGB to NTSC
Matte - solid background and border color (generated within the Toaster)

CurrentMain - found frequently in the NewTek effects include files, implies *whatever is
currently on the Main video buss’ (not necessarily any particular video source, but
"whatever’) - in almost all effects this is the Sourcel (starting source, the source FROM
which the Toaster is switching). In this text description, I’ve used the term *Sourcel’ to
mean the same thing.

CurrentOverlay - found frequently in the NewTek effects include files, implies *whatever is
currently on the Overlay video buss’ (again, not necessarily any particular source, but
"whatever’) - in almost all effects this is the Source2 (ending source, video TO which the
Toaster is switching). In this text description, I’ve used the term ’Source2’ to mean the
same thing.

CrUD - Crouton User Data, color and video source control bit data portion of all Toaster FX
files

Single Image Color Cycling Source/Encoder/Fade FX (NEON BANDS)

In this effect, a single Amiga 256-color hi-res interlaced image is the source of all the action. The
Toaster smoothly changes its Main output from one video source to another as colors cycling through
the image successively induce different areas of one source to become more and more transparent to
the other video source. As part of the action we also see portions of the actual Amiga image as its
colors cycle. Obviously, since we see some Amiga graphics, the Encoder (discussed above) is
sometimes passed through AMUX or BMUX to the Fader. We also see a combination of the user-
selected Main and Preview sources with the "encoded’ Amiga graphics at varying transparency (each
second source increasingly shows through the increasingly ’transparent’ Encoder source). We might
guess that at any one pixel on the Main Toaster output’s display, we see the Fader mixing between
either the user-selected Sourcel (Vidl, Vid2, Framestore, etc.) or Source2 and the Encoder. We
might imagine that AMUX is being switched on the fly so that either of two Toaster video sources is
fed to the A side of the Fader and Encoder (Amiga graphics) is being fed continuously to the B side
of the Fader through the BMUX. Then the Fader is being manipulated to output varying
combinations of what comes through the two MUX’s.

That is indeed what is happening in this effect, and the colors on the Amiga graphics are being
manipulated so that their Amiga digital color bits control the Toaster’s video flows for this
combination of 3 sources of imagery to generate a smooth transition from Sourcel to Source2 on the
Toaster’s Main video output. The palette colors through which the Amiga image cycles have their
low-order bits set to manipulate the Toaster’s video signal flow in just the right way. Here's how:

One of the color palette ’bits’ in each color is used to force AMUX to select between Sourcel and
Source2. (Yes, Virginia, it does take 3 bits to select one of the 8 AMUX inputs to pass through to the
A side of the Fader, but the Toaster will take care of this automatically for our purposes. Since we
only wish to choose between the two sources selected on the Switcher Interface we can think of this
as a single bit while designing the effect. The Switcher software does indeed manipulate all three

5

"latch’ bits in the palette colors behind the scenes.) Encoder is "permanently’ selected on BMUX (that
is set up by the Toaster in a way which doesn’t require any on-the-fly input from Amiga image color
bits since it is not changing - more on that later but ’hint’ - remember the little mini-muxes which
control how AMUX and BMUX input selection takes place?), and two bits of each color are used to
vary the Fader’s level of mixing between its A and B inputs. Those two bits of Fader control let the
Fader show four levels of mixing between its A and B sides. Altogether, 3 different sources of video
are being mixed and the actual palette values assure that the mixing goes in an orderly way as the
different Amiga RGB color values cycle through the Amiga image’s palette. Obviously the initial
color palette positions in the Amiga image have color values which assure that ONLY Sourcel is
solidly on the Fader’s output and at the end of the color cycling the same image’s palette has color
values which assure that ONLY Source?2 is solidly on the Fader’s output. What happens in between
is that a "longer’ palette of colors, is ’slid’ through the image’s palette (starting with all Amiga colors
having Sourcel control bits and ending with all Amiga colors having Source2 control bits) and the
intermediate colors in the long palette have various bits sets to manipulate the AMUX and the Fader.

This type of color cycling fade transition can only be used with an Amiga A4000 since it uses a 256-
color palette (really only 240 colors are actually used out of the 256-color palette, others are reserved
but more on that later). This is an "AA-only’ effect. An Amiga A2000 can’t use this particular kind
of effect with so many smoothly changing colors because an A2000 is limited to hi-resolution images
of only 16 colors. An variation of this effect could be designed for an A2000 system but it would
have to conform to the limitations of the A2000’s color versus resolution tradeoffs. We’ll come back
to this effect later and show how to use its theory of operation to make similar ones of your own.

4-Color Animated Source/Source Switch FX (CAMERA IRIS)

This type of effect is perhaps the simplest of the animated effects. A palette of only 4 colors is used
on the Amiga animation and only 3 of them play a role in the video switching. In the CAMERA IRIS
effect we first see Sourcel solidly on screen as a nearly solid black animation of the camera iris
slowly closes down around it and covers it up. As the iris opens again the Source2 video appears at
the screen’s center and expands from the center of the screen to reveal all of Source2. In this effect
the Fader is not moved at all - only the BMUX is rapidly switched between video sources under
control of the 3 of the animation’s palette colors.

For the first half of the animation, AMUX alternately selects Sourcel and the Toaster’s Matte
background color (set to black). These two sources are selected on AMUX according to two of the
colors in the animation. In this first half of the animation’s duration only 2 Amiga colors are in use in
the animation. One of them is a color that lets Sourcel show in the Iris’ center as it closes down, the
other selects the Toaster’s Matte background color on AMUX.

During the second half of the animation one of the Amiga’s colors is changed and that lets the
AMUX now select Source2 or Encoder Matte as its input. This portion of the animation has the
alternate color (the one which lets Source2 get selected on the AMUX) occupy the center of the Iris’
opening.

I’ve left out a tiny bit of this animation’s complexity since during the first half, there are really 3
sources of video alternately applied to AMUX by various pixels of the Amiga’s animation. There are
some thin lines in the animation which ALWAYS show the Source2 video, throughout the whole
animation, i.e. the color of the animation which lets Source2 become selected on the AMUX also
appears in a tiny portion of the animation - during both halves of the animation. During the second
half of the animation, only 2 colors are used as described above - causing switching of AMUX
between only the Source2 video and the Toaster’s Matte generator (set to black).

Remember, during this entire animation, the Fader simply sits with 100% of its output coming from
the AMUX and the AMUX does ALL the work by being controlled by 3 different Amiga animation
palette colors. We’ll also come back to this effect later to show how its theory of operation can be
exploited for effects of your own creation.

6

4-Color Kiki Source/Matte/Source Wipe FX (BEAR)

This type of effect is produced in a way identical to the CAMERA IRIS effect, only the animation
moves across the screen instead of playing statically centered on the Amiga screen.

Multi-Color Smooth-edged Animated Wipe FX (GIRAFFE)

This type of effect has features in common with both the color cycling static image (NEON) and the
simple 4-color moving or static animated wipe (CAMERA IRIS) described above. These wipes use a
full color palette (actually, 240 out of the 256-color full palette) and an Amiga animation, but these
animations have plenty of color and visual appeal beyond the simple shadow-like animation of
CAMERA IRIS or BEAR. This type of effect also makes use of varying degrees of transparency
between the A and B sources applied to AMUX and BMUX by swinging the Fader smoothly between
them. Like the NEON effect, the AMUX is switched pixel-by-pixel between two user-selected video
sources and the Amiga images are applied as the only source to the BMUX via its Encoder input.
The use of the Fader to show mixtures of the AMUX and BMUX signals lets us have smooth edges
around the borders of the animated object moving across the screen.

The GIRAFFE effect will serve as an example of this type of effect but there are many which are
created in a similar way, including a number of the wipes which have other objects in place of the
giraffe. Some of those related effects may use a scrolling image which is larger than the display area
instead of a regular Amiga animation (simpler when the image isn’t really changing like the giraffe
does) but the idea is the same.

Introducing a variable transparency or mixing (Fader control) along with the animation smoothly
anti-aliases edges on the animation’s Amiga (Encoder signal) graphics where they adjoin either the
Sourcel or Source2 video. This helps minimize jaggies along the edges of the Amiga animation and
NTSC video artifacting which can occur along sharp-edged color transitions.

This type of effect uses a non-cycling palette but the construction of the palette is peculiar because of
the method used to build the animation. The animation’s color palette has to include colors whose
bits force Fader levels and AMUX source variations like the NEON cycling effect’s varying palettes
do.

The construction of this type of Amiga animation is a 3-step affair. Three different animations are
actually merged into one (using a tool called BitPlay we'll meet shortly). One of the animations is a
simple two-color (a single Amiga bitplane) Amiga animation which is used in the end result to
specify the bit-control of the AMUX (selection of Sourcel or Source2 (remember that Sourcel is just
’whatever’ is on the Main buss, Source2 is whatever’ is on the Overlay buss - Sourcel is the
*CurrentMain’ and Source? is the 'CurrentOverlay’ - Sourcel is the *from’ and Source2 is the "to’)
video inputs to the A side of the Fader). Another animation is a four-color (two bitplanes) Amiga
animation and it is used for the anti-aliasing variable-transparency edges of the Amiga graphics. The
third animation is a 32-color (5 bitplanes) Amiga animation, which becomes the Encoder video signal
on the BMUX s side of the Fader. The 32-color animation is the original full-color GIRAFFE
animation. The original 32-color animation is made intentionally NOT to use the top two Amiga
colors (does NOT use Colors #30 and #31!). When BitPlay merges the three animations together, the
32-color Amiga animation’s colors are spread out into a palette of 256 colors (again, only 240 are
actually used with 16 reserved for specific Toaster internal use). Each of the Amiga animation’s
original 32 colors is spread into 8 sub-shades by the introduction of the 3 other bitplanes from the
other animations (1 bitplane for AMUX selection and 2 for Fader control). The top two colors (#’s
30 and 31) were not used in the original animation so that they become colors #240-255 when the
anim is manipulated by BitPlay and those colors need to be reserved for the Toaster’s own use.
Avoiding Colors #30 and 31 when making the original anim just assures that the top 16 colors of the
256-color anim created by BitPlay are left unused. The 8 subshades within a color group are nearly
indistinguishable visually, only a few low order color bits vary among them. They can be
distinguished when you examine frames of the composited animation after merging with BitPlay.

7

Now we need to exercise a bit of mental gymnastics to imagine how a single the effect of eithera 1 or
0 in a pixel of one bitplane of an 8 bitplane Amiga graphic becomes reflected in an Amiga 256-color
palette. Let’s keep it simple and imagine that the bitplane in question is the low order bitplane. If a
1-bit is present in a pixel of that bitplane then it must be true that one of the odd-numbered colors in
the palette will be used for that pixel. Remember that when an Amiga graphic is made of 8 bitplanes
(only possible on an AGA Amiga, of course), the Amiga takes the 8 bits of a pixel which originate in
different bitplanes and uses that 8-bit value to select a color for that pixel from a table of 256 colors.
Now you can see why the presence of a 1-bit in a pixel’s low order bitplane will mean that some odd-
numbered color palette position is selected to color that pixel. If a 0-bit occurs in a pixel’s low order
bitplane then the color selected will be one of the even-numbered palette entries. The overall effect
of using a single bitplane of an Amiga animation to specify the Toaster’s AMUX video source for
each pixel on the Amiga screen is that all even-numbered colors in the palette table correspond to the
selection of one of AMUX’s possible video sources and odd-numbered colors in the palette table
correspond to the other AMUX choice.

Using a similar concept of how bitplanes #1 and #2 might combine to control the Fader level we can
see that various combinations of 1-bits and 0-bits in those particular bitplanes will correspond to
palette entries spaced at certain intervals in the palette. For example a 00 combination of bits in the
#1 and #2 bitplanes correspond to palette entry positions evenly divisible by 4. The BitPlay
animation merge utility actually does the positioning of palette positions in relation to bitplane bits
slightly differently. Here’s what BitPlay does:

BitPlane 2 BitPlane 1 = Combined BitPlane 0
4-level 4-level Fader 2-choice

Fader Control Fader Control Level AMUX Selection

Palette

Positions

0O 8 16. 0 0 e 0(0%) 0

1 9 17. 0 0 = 0(0%) 1

2 10 18 0 1 = 1 (33%) 0

3 11 19 0 1 = 1 (33%) 1

4 12 20. 1 0 = 2 (67%) 0

S 13 21. 1 0 = 2 (67%) 1

6 14 22, 1 1 = 3 (100%) 0

7 15 23. 1 1 = 3 (100%) 1

BitPlay merges the bitplanes used for AMUX and Fader control and generates a palette positioning
order which is not strictly in increasing binary order - it pairs up possible Fader levels with both
possible AMUX source levels. The pattern of 8 successive combinations repeats throughout the
vs;lh(_)le palette. Each Fader level appears twice in a row, with its two possible AMUX selector
choices.

All the while the upper five bitplanes (which came from the original Amiga 32-color animation) keep
the high order palette color values they had in the original Amiga animation. What’s been done by
BitPlay is to spread the original 32 colors related to the original 5 bitplanes into 256 colors by tacking
on the 1-bitplane AMUX animation and the 2 bitplane Fader animation and the result is a palette in
which there are patterns of 8 color variations which repeat essentially 32 times. Take a look at the
color table entries in the CrUD source file for GIRAFFE (shown below) to see this pattern as BitPlay
creates it for a real CrUD source file.

With that behind us (whew!) you could examine the frames of the GIRAFFE with a paint program

and you’d find that certain areas of the images use pixels of colors which are appropriate. One of the
disks accompanying this documentation (the GIRAFFE disk) actually contains the three original

S

animations used to construct the final GIRAFFE effect. You should examine all three of those
animations. First look at the Giraffe.Latch animation to see how the single-bitplane animation
reveals its role of broadly exposing either the Source2 video (to the left of the center of the Giraffe) or
the Sourcel video (to the right of the Giraffe). Then look at the Giraffe.Alpha animation to see the 2-
bitplane animation follows the outline of the giraffe to let its edges smoothly fade between Source2
video and Encoder (the edges on the left side of the giraffe smoothly ramp over to the colored
giraffe’s Encoder signal) and the Encoder and Source?2 on the right side edges of the giraffe. Then
look at the Encoder animation to see the original 32-color giraffe animation itself. We’ll run an
example of creating this effect later and let BitPlay merge them together and then you can see the end
result of the merge process and its effect on the original 32-color palette of the Giraffe.Encoder
images.

Creating FX - FX Elements and The FX Environment Tools
FX Elements - CrUDs, Amiga Graphics, and Effects (Crouton) Icons

Each effect is built from (a mimimum of) three components, a Crouton User Data (CrUD) file and an
Amiga Graphic file (either an ANIM or an ILBM IFF image), and an icon file for that effect. The
CrUD defines that nature of the effect and how the Toaster will handle the companion Amiga IFF
image or ANIM and run the effect. Amiga IFF graphics are already familiar. The icon file is simply
a 4-color Amiga IFF ILBM of 80 x 50 pixels. A special tool (call RunNot) is used (automatically)
during the effect-creation process to replace your 80x50 pixel IFF with an identical one which does
not have the typical IFF run-length compression. The final icon used for your effect will be an
uncompressed 80x50 IFF ILBM image.

A Closer Look at CrUD Source Files

Before moving on we should examine three CrUD source files for the examples of effects creation
we’ll be using. First let’s look at the CrUD Source File for WIPE TWISTING NEON BANDS.

Sle ok 2k ok ok 2k ok ok e of¢ she 2k i 2k ke 2k ok ok 3k 3he 2k 2k 2k 2He e e ke ke He e 3fe 3k Sfe ke ke 2 ok She S sfe sfe ok she sk Sfe 2He ke e e 3¢ e Sk 24 ke i e ke A 2k 2k 24 ok ke ofe 2k ok 2fe sfe e e e sk sk ok ok

;CrUD sourece file for WIPE TWISTING NEON BANDS

;The following line is an assembler directive to merge in the tags.i assembly language include file of
;constant values and names in the course of the "'make’ process conducted by SingleMake’s call to the
;PhxAss assembler. C programmers need not worry - there’s no assembly language to learn - the
;assembler is provided and called automatically by the SingleMake 'make’ script.

Include "tags.i"

CrUD_START CrUD_ILBMFX,CrUD 4 0
;The values of all the TAG_xxxx, AFXT_xxxx, and PACO_xxxx items are in the tags.i file. These
;particular tags and their values are long word 32-bit numbers, but not all NewTek effects tags are

;necessarily 32-bit.

;Each TAG _ declaration below is actually a macro with one parameter, see the tags.i include file.
;Some ;of the TAG _xxxx macros have numerical values and some are Boolean (TRUE or FALSE).

;TAG_FCountMode can be 0, 1, 2, or 3. The value here of 2 means variable speed is supported for
;this ;effect. The next few tags are supporting individual speed values used when there really is a
;variable ;speed.

TAG_FCountMode 2

o

;TAG_VariableFCount is the variable frame count (speed) value.
TAG VariableFCount 40
;TAG_SlowFCount is the number of frames to be used when this effect is played at SLOW speed.
TAG_SlowFCount 80
:TAG_MedFCount is the number of frames to play when this effect is in MEDIUM speed.
TAG_MedFCount 40
;TAG_FastFCount is the number of frames to play for this effect in FAST speed.
TAG_FastFCount 20
TAG_Interlaced TRUE indicates the IFF ILBM used in this effect is interlaced.
TAG _Interlaced TRUE
:TAG_KeyMode here indicates that the Fader will be controlled by the DIB method (using 2 bits,
:four Tevels of Fader control between its AMUX and BMUX inputs). Note that the value
;AFXT Key 4Level70ns is synonymous with AFXT_KeyDIB (see tags.i).
TAG_KeyMode AFXT Key_4Level70ns
:TAG_Encoder TRUE means that Amiga graphics will appear on the BMUX for this effect. If we
left this out or made it FALSE, then the BMUX would get Toaster Matte color generator input
;instead of Amiga graphics.
TAG_Encoder TRUE

:TAG_LatchAM TRUE means Amiga color palette bits will control the selection of video sources on
;the AMUX.

TAG_LatchAM TRUE

“TAG_ButtonELHlogic is set to a value which tells the Toaster software how to manipulate the
;behavior and appearance of the user interface buttons during the effect.

TAG_ButtonELHlogic AFXT Logic_LatchAencoderB

‘TABLE_PaletteColors is a structure macro which informs the effect how to manipulate and interpret
:Amiga palette colors during the effect.

TABLE _PaletteColors

‘The PACO_NumberOfPalettes tells the effect that a total of 340 different color combinations will
:occur during this effect. The effect starts with one 240-color palette but that palette is replaced 340
‘times as successive colors in the table below are ’slid’, one color at a time, into the Amiga palette for
:this image. The extra palette counts were inserted here as the effect was created, to compensate for
-the *widths’ of the several bands of color that create the soft edges. This allows the transitional
-values of the palette to cycle completely off the end of the color table, leaving the screen filled with a
;solid source.

de.w 240+12+32+12+32+12 ;PACO_NumberOfPalettes
10

;This says the Amiga image palette colors will be replaced by shifting the whole palette by one
;position during the cycling process (a new top color enters from the next value in the table below).

de.w 1 ;PACO_ColorsBetweenPalettes
;number of colors between palettes
;1 for moving pointer.

;The initial palette will start at the zero position of the table below.

de.w 0 ;PACO_StartingColorNumber
;Ususally 0

;240 colors at a time will be used in the Amiga image’s palette. Remember that for 256-color effects,
;the top 16 colors of the palette are reserved for internal use by the Toaster.

de.w 240 ;PACO_NumberOfColors
;Maximum of 240

;The following color table will be *masked’ into the Amiga image’s palette in such a way that the bits
;in the color table’s palette entries will be used as *mask’ values in the colors’ low bits to let the
;Toaster use them as controls for the AMUX source (Latch) and four Fader (DIB) levels without
;c}?an%}ng the higher order bits that make up the palette values that are encoded into the colors used in
;the eftect.

dcl PACO_Mask_Latch!PACO Mask DIB

;This effect doesn’t require any additional palette masking control values so the following three
;positions in this structure are set to 0 (PACO_Mask Nochange = 0, see tags.i.)

dcb.1 3,PACO_Mask Nochange ;other Masks not needed

;A block of 16 bytes at the end of a TABLE _PaletteColors structure is reserved for future use and
;filled with zeroes for now.

dcb.b 16,0 ;space reserved for the future

;The following color table starts with a set of 240 bit-manipulation entries which ALL are set to start
;the effect by having the entire Amiga image’s color palette ’latch’ the user’s current Main video bus
;selection onto the AMUX and have the Fader set to 100% AMUX level. There are 240 long words
shere, each with the value of #$00000000 OR’d with the bit denoting Main bus ’latching’ on AMUX.
;The #300000000 value (0, zero) means that the Fader is at its zero position (100% on AMUX).
;Remember that this effect permits 4 levels of Fader control between AMUX video sources and the
;BMUX which is set to Encoder (Amiga graphics). We start the effect with the Fader set to show
;only AMUXs source - and that source will be the user’s selected Main video input.

* color table

dcb.1 240,$00000000!PACO_CurrentMain
;As the color cycling begins, the first color which replaces the ’top’ Amiga palette entry is
;immediately below - and it has AMUX still "latched’ to Main but now we’ve started to mix a small
;amount of the Amiga graphic by setting a value of 1 (#$00000001) to shift the Fader to 66.6%
;AMUX and 33.3% BMUX (which has Encoder selected).

dcb.1 1,$00000001!PACO_CurrentMain

11

“The next two colors which get *slid’ down into the top of the Amiga image’s palette also point the
:AMUX to the Main bus video input but now we’ve raised the Fader control level to 2 so we'll see a
:mix of 33.3% AMUX (’latched’ to the Main ;video) and 66.6% Amiga graphics wherever this
;palette color appears.

deb.1 2,$00000002!PACO_CurrentMain

*

-Now we find a series of three colors which will slide down into the top of the Amiga image’s palette
-in which the AMUX is still ’latched’ to the Main video source, but we’ve now swung the Fader (the
-#$00000003 value) to 100% BMUX. That means that the Amiga image (Encoder source on BMUX)
-completely covers any part of the display where these three colors are displayed. Now our palette
‘has elements where the bottom 234 colors still show 100% AMUX Main video but the top 6 colors
-show increasing levels of BMUX Encoder input. The top 6 colors 'ramp’ up to show the Amiga
;graphic.

deb.1 3,$00000003!PACO_CurrentMain
‘The following three colors to be slid down into the Amiga palette also point 100% to the BMUX, but

-we’ve switched the AMUX source (while it is really invisible for these colors) to the second video
;source (the replacement source to which the Toaster is switching).

deb.1 3,$00000003!PACO_CurrentOverLay

*

-You can now see that the rest of the colors which slide through the Amiga palette have varying
-combinations of effects. They successively manipulate combinations of AMUX video sourcing
:(Main and Overlay) and mixing of the AMUX source video with the Amiga graphic Encoder signal
;on BMUX.

:It is important to realize that the colors in this table don’t really become full Amiga image palette
-entries and that the Amiga palette entries don’t actually cycle at all. The values in this series of color
table entries in the CrUD are just being used (sequentially) to readjust the effect of the low-order bits
:of each Amiga palette color on the Toaster’s video mixing hardware.

deb.1 2,$00000002!PACO_CurrentOverLay
deb.1 1,$00000001!PACO_CurrentOverLay

deb.1 32,$00000001!'PACO_CurrentMain

deb.1 1,$00000001!PACO_CurrentMain
decb.l 2,500000002!PACO_CurrentMain

deb.1 3,$00000003!PACO_CurrentMain
deb.1 3,$00000003!PACO_CurrentOverLay

dcb.1 2,$00000002!PACO_CurrentOverLay
deb.1 1,$00000001!'PACO_CurrentOverLay

deb.1 32,$00000000'PACO_CurrentOverLay
dcb.1 1,$00000001!PACO_CurrentMain

12

dcb.1 2,500000002!PACO_CurrentMain

dcb.l 3,$00000003!PACO_CurrentMain
deb.1 3,$00000003!PACO_CurrentOverLay

dcb.1 2,500000002!PACO_CurrentOverLay
dcb.1 1,$00000001!PACO_CurrentOverLay

;The effect ends by sliding in a complete set of control-bit replacements for all 240 colors in the
;Amiga palette - wherein the Source2 (CurrentOverlay) video shows everywhere and has completely
;replaced the original Main source

dcb.1 240,$00000000!PACO_CurrentOverLay

;The following two macros are always found at the end of the CrUD source file, TABLE END wraps
;up the TABLE_PaletteColors structure and CrUD_END wraps up the entire CrUD file.

TABLE_END
CrUD_END

33k b b e e 3k o dk ke s ahe heofe ke ke sk e e 3 2 ok b b e ke b ke ke e sk ok ke ke she e sk e e sk sheshe e b 3k e she sl sk ok ok ke ke e de sk e she ke ofe 3k 3k sk ke sk sk e sk sfe e e e e sk

This is the CrUD source file for the CAMERA IRIS effect. This CrUD source file consists of a
number of NewTek-defined Tag items and their values, along with a color table which contains color
palette information for the Toaster to use at the time the effect is run. The Tag names and their
allowable values are found in the tags.i assembler source file in the INC directory of the ENVIR
drawer (see below). I've added a number of comments to this CrUD source file.

3K 3 sfe he e e s 3 e sk sk ok ke ke s e ke e 3k e sfe e e e dde ke o e sk sk ok ke e ke ke e sk she s e ake ke ke s 3k 3k ok sk i ok ke ke 3k 3k 3k 3K sk 2k ke ke 3k 3k sk sk sk ok e 3k 3k ke sk ke 3¢

;CrUD Source File for CAMERA IRIS

;The following line is an assembler directive to merge in the tags.i assembly language include file of
sconstant values and names in the course of the *make’ process conducted by SingleMake’s call to the
;PhxAss assembler. C programmers need not worry - there’s no assembly language to learn - the
;assembler is provided and called automatically by the SingleMake *make’ script.

Include "tags.i"

;CrUD_START is a macro which has two constant value arguments. The arguments specify what
;kind of effect and the Toaster software revision - in this case CrUD ANIMFX means this CrUD will
sbecome part of an animation effect and CrUD_4_0 specifies Toaster 4.0 software usage.

CrUD_START CrUD_ANIMFX,CrUD 4 0

;The values of all the TAG_xxxx, AFXT_xxxx, and PACO_xxxx items are in the tags.i file. These
;particular tags and their values are long word 32-bit numbers, but not all NewTek effects tags are
snecessarily 32-bit. Each TAG_ declaration below is actually a macro with one parameter, see the
;tags.iinclude file. Some of the TAG_xxxx macros have numerical values and some are Boolean
;(TRUE or FALSE).

13

“This indicates that this effect DOES have sound when the effect occurs at FAST speed (only) and its
;value (AFXT AudioFast) indicates the sound is of unknown stereo or mono type.

TAG_AudioFastSamples AFXT AudioFast
“This indicates that the effect will turn off the Amiga’s audio filter
TAG_TurmAudioFilterOff TRUE

“This indicates this effect can be used on Amiga 2000 Toaster systems (non-AGA or non-AA
;systems).

TAG_NonAAeffect TRUE

‘This item indicates that latching (AMUX or BMUX pixel-color-based video source selection) will be
;used in this effect for the BMUX.

TAG_LatchBM TRUE

‘This item specifies the color generated by the Toaster’s Matte generator, in this case it will be pure
;black.

TAG_MatteColor AFXT Matte_Black

‘This item dictates the "keying mode’ - how the Fader will be operated under palette color control. In
-this case, the value of AFXT Key Fader means that the Fader will be under control of the CDAC 0-
7 bits. For this particular effect, those bits don’t change during the effect so this is simply one way
;of saying that no Fader operation takes place at all!

TAG_KeyMode AFXT Key Fader

“The ButtonELHLogic tags specify how drawn buttons on the user-interface will behave during the
:effect. There are a number of combinations of how Toaster user interface buttons get enabled,
:disabled, and highlighted during and after an effect. This value is used to denote which combination
-of those button handling routines will be in force for this effect and also how the Toaster allocates
-various of its control bits to handle internal video signal routing and mux controls

TAG_ButtonELHlogic AFXT Logic TSEab

“The following macro sets up a specific format for a palette color data structure which will be
:interpreted by Toaster’s effects-running system. Whereas tags are used as required to specify the
-nature of the effect, the following table always requires certain entries and will resemble this form in
-all CrUD source files. See tags.i for a complete description of the PaletteColors table. It also sets up
:the AMUX/BMUX/Fader control input routing in the Toaster.

TABLE PaletteColors

-The first entry in the table indicates the palette in use will be compatible with non-AA systems
:(A2000) and that one palette is used throughout the entire effect (we're not color cycling here!).

de.w 1 ;PACO_NonAA NumberOfPalettes

-The next entry sort of re-states that no cycling will take place, it means that there’s a zero color
;cycling step size.

de.w 0 :PACO_NonAA_ColorsBetweenPalettes
14

;This denotes that the palette used by the effect will start with the first color in the color palette, the 0
;color.

de.w 0 ;PACO_NonAA_StartingColorNumber
;This states how many colors are in the palette - only 4.
de.w 4 ;PACO_NonAA_NumberOfColors

;This tells the Toaster how to process the values in the color table below. See the above discussion of
;how various bits in certain places in a color value can affect AMUX/BMUX source selection (known
;as 'latching’), etc. The color table provided below in the CrUD source file is deliberately
sconstruction without any real colors, but only certain bits activated which the Toaster will use to
;’mask’ into the actual colors from the original animation. The masking method used by this effect
;means that all bit positions of the color values in the palette will be entirely REPLACED by the
;values specified in the following table. Since the tag entries for these values only contain the low-
;order control bits, the original palette from the anim will be replaced with a palette that appears
;entirely black on the Amiga RGB monitor but is filled with video sources or matte color on the Main
; Toaster output.

de.l PACO_Mask Replace
;There are three more long word slots in the PaletteColors table structure for additional MASKING
;information items. In this case, all three are simply set to O (the value of PACO_Mask Nochange in
;the tags.i file) and are not with this effect.
dcb.1 3,PACO_Mask Nochange
;The PaletteColors table ends with a block of 16 bytes which are reserved for possible future ;use.
decb.b 16,0 ;space reserved for the future
* color table
;The O palette color goes entirely unused in this animation effect.

de.1 $00000000

;The 1 palette color will be used to ’latch’ the BMUX to whatever video source the user has selected
;on the Toaster’s Main video bus when the effect occurs; the *CurrentMain’ source.

de.l $00000000+PACO_CurrentMain

;The 2 palette color will be used to ’latch’ the BMUX to whatever video source is set to replace the
;Main one, i.e. the source selected by the user on the Preview bus; the *CurrentOverlay’.

de.l $00000000+PACO_CurrentOverLay

;The 3 palette color will "latch’ the Toaster’s Matte generator (already specified to be a black color by
;one of the tags earlier in this CrUD) to the BMUX. Note also that this value, PACO EncoderMatte,
;smeans EITHER the Encoder OR the Matte - and which will be used is taken care of by a tag ;earlier
;in the CrUD. Matte is the default so no tag was actually used to specify this. Had we wanted the
;Encoder to be used for PACO_EncoderMatte, we’d have had to specify TAG Encoder TRUE in the
;above set of tags for this CrUD.

de.l $00000000+PACO_EncoderMatte
15

;Now two macros to end the CrUD’s PaletteColors table structure, then finalize the CrUD (see tags.i)
TABLE_END
CrUD END

sheske st e s ke sk ke ok ok ok b se s ke sk sk o sk s sk o s el e e ke e sk ke sk ok ke sk e e sl e sk ok ok ok e sl ke sk ke s ke sk e sk ok seske ke ke sk o s ok s ke se ok ke e e ske ke sk sk

This is the CrUD source file for the GIRAFFE effect, our third example. A more limited set of
comments is applied to this example since a number of the TAG_xxxx items and their values were
already explained above.

3hehe se s 3 3 Ok 2k ke ok 3k 3ke e fe 3k e ke e ke e 24¢ 34 2k 3fe o ok 3k ke e she 3k 3 k¢ vl e ofe ok ke ke 2k ok ke 2k 2k 3he e sk 2he ake 3k e 2 sk she 3 3¢ 3k e 2k ke e 5¢ e ke ok 24 3K 34c k¢ ok e A e e Sk

sCrUD source file for GIRAFFE

Include "TAGS.I"

CrUD_START CrUD_ILBMFX,CrUD 4 0
;Encoder will show on the BMUX

TAG_Encoder TRUE
;This does not play as a variable speed effect.

TAG_FCountMode 1
TAG_VanableFCount 0

;SlowFCount is 0 so no SLOW speed; MedFCount is 2 so each giraffe animation frame plays 2
;frames in MEDIUM speed; FastFCount is 1 so each giraffe frame plays 1 frame in FAST speed.

TAG_SlowFCount 0
TAG_MedFCount 2
TAG_FastFCount 1
TAG_ButtonELHlogic AFXT Logic LatchAencoderB

;" Latching’ (video source selection) on AMUX, keying (Fader control) controlled by DIB (same as
;4Level70ns, see tags.i).

TAG_LatchAM TRUE
TAG_KeyMode AFXT Key DIB

;If you want sound present on FAST speed play (its sample file should be in Speed1 drawer of csrc
;during effect creation by SingleMake, see below). These tags indicate that sound is present on FAST
;speed but I'm informed there really isn’t a sound for GIRAFFE and that these tags simply are
;ignored because no sound file is available in csrc/Sound] of the Envir drawer (see below).

TAG_AudioFastSamples AFXT AudioFast
TAG_TurnAudioFilterOff TRUE

TABLE_PaletteColors

de.w 1
de.w 0
de.w 0

16

de.w 240

dc.1 PACO_Mask DIB+PACO_Mask_Latch
dcb.1 3,PACO Mask Nochange

dcb.b 16 0

:Every other color alternates the AMUX ’latch’ source selection and successive pairs of colors will
have varying levels of Fader mixing between AMUX and Encoder present on BMUX. PACO_DIB0
:=(, PACO DIBI = 1, PACO DIB2 =2, and PACO_DIB3 = 3 (the four levels of DIB-controlled
Fader level). In one of the earlier CrUD examples we saw these DIB levels explicitly declared as
numencal values (#$00000000, #$00000001, #$00000002, and #$00000003) while here they are
;declared using value names from tags.i.

dc.] 0+PACO DIBO+PACO_CurrentOverLay
dc.10+PACO_DIB0+PACO_CurrentMain
dc.] 0+PACO_DIB1+PACO_CurrentOverLay
dc.] 0+PACO_DIB1+PACO_CurrentMain
dc.1 0+PACO_DIB2+PACO_CurrentOverLay
dc.1 0+PACO_DIB2+PACO_CurrentMain
dc.1 0+PACO_DIB3+PACO_CurrentOverLay
dc.1 0+PACO_DIB3+PACO_CurrentMain

(the pattern of 8 values above repeats 28 times here)

dc.10+PACO_DIB0O+PACO_CurrentOverLay
dc.10+PACO_DIB0+PACO_CurrentMain
dc.1 0+PACO_DIB1+PACO_CurrentOverLay
dc.1 0+PACO DIB1+PACO_CurrentMain
dc.1 0+PACO_DIB2+PACO_CurrentOverLay
dc.1 0+PACO _DIB2+PACO_CurrentMain
dc.1 0+PACO_DIB3+PACO_CurrentOverLay
dc.1 0+PACO_DIB3+PACO_CurrentMain

TABLE_END
CrUD_END

24 24 2k ok ok ok 4 e e 3 2l e ke 3k she 2k ok 9k 2h¢ ke e A 3k ke 2k ke e e 24 she 3k S she ok 2k Ske ok i dfe ke e e e 3k vfe 24 2k dfe 24 2k ok ke 3k e 3k ke e e k¢ 2k 2k 2k 2k 2de e 2k vke Ao e ke e ARk Ae A

17

The FX Creation Environment and Tools

An automated processing system for building effects from the three component parts is part of your
developer package. It is called FXTools and comprises a directory on an Amiga storage volume.
FXTools includes a number of programs (tools) and subdirectories.

The tools in FXTools are:

BitPlay - a program which merges 3 anim files into one and creates an appropriate CrUD file for
inclusion in the final effect. BitPlay is called automatically by the animated effects *make’
script. The CrUD file created by BitPlay is actually an assembly language source file for
the CrUD chunk of an effect file.

AnimTool - a program which can process an existing anim file and convert it to a specialized
form (a Smart Anim) which plays at maximum speed under the Toaster’s FX anim playing
system. Smart Anim files may be mixtures of different types of Amiga anim compression.
AnimTool analyzes the anim file it is processing and determines what form of frame-to-
frame compression is best for each successive frame. The result is a Smart Anim which
partly use Anim5, Anim7, or Anim8 compression between frames - or even no compression
at all between certain frames. AnimTool also analyzes your original animation to detect
whether it can play smoothly on a Toaster effect. For most of your original animations it is
wise to generate them as 384x241 with 32 colors. Many animations of this type can simply
be prepared as Anim7 or Anim8 files and won’t require conversion to Smart Anim format.
You can test the resulting Toaster animated effects yourself and determine whether they’d
benefit from AnimTool processing. AnimTool is not called automatically by the batch
AmigaDos script files that build the effect from its components. AnimTool is supplied for
you to use as needed.

AnimSplicer - a animation construction and deconstruction utility. AnimSplicer, like
AnimTool, is not called automatically by the effects 'make’ scripts. It is provided to let
you merge animations you’ve built in sections into a single Anim file.

The subdirectory structure of FXTools looks like this:

Make4.0 - drawer
csrc - drawer containing source portions of your effect

Anim - source ILBM or ANIM files (SingleMake looks here)
Date - drawer used for temporary date storage and compares

CrUD - drawer containing CrUD files corresponding to the

contents of the Anim drawer’s graphics files (SingleMake
looks here for the CrUD source file)

Date - drawer used for temporary date storage and compares
Binary - drawer for CrUD object file binary data

Icon - drawer containing your crouton icon IFF images
Has icons for the example effects creations we’ll do plus a
sample of a color icon (VTLogo), and the *Genericlcon’.
Date - drawer used for temporary date storage and compares

Sound1 - drawer with IFF 8SVX sampled sound for FAST speed
Camera Iris sound effect file
Date - drawer used for temporary date storage and compares

Sound? - drawer with IFF 8SVX sampled sound for MEDIUM speed
Date - drawer used for temporary date storage and compares

Sound3 - drawer with IFF 8SVX sampled sound for SLOW speed
Date - drawer used for temporary date storage and compares

18

Toaster - drawer
Effects - drawer where final effect and icon are deposited by the
SingleMake *make’ script
Envir - drawer
Inc - has NewTek assembly include files required for the assembler to
process the CrUD files during the make’ process
Exec - drawer with a very few Amiga Exec assembler include files

Bat - has batch files related to effects construction including
SingleMake (the one we’ll use). SingleMake will perform all
the necessary steps to build a usable effect from its components.

Bin - binary files (various programs and tools) used by the
SingleMake 'make’ script, including:

AddPus - appends the Parse Upward Search structure to the CrUD

AnimLen - determines # of frames in an Anim file

Append - adds CrUD data file to the effect and icon files

CmpDates - checks to see if dates on effect and icon match

iff.library - gets copied to your libs: directory (if needed)

MatchDate - makes dates of effect and icon i1dentical

Obj2Data - converts assembled CrUD object files to CrUD data

PhxAss - a P.D. assembler which assemble CrUD source files

RunNot - a program which converts an 80x50 pixel typically
compressed IFF ILBM image into a form (non-compressed ILBM)
used by the Toaster as a crouton icon. RunNot is called
automatically by the SingleMake *make’ script.

RunNot_CAMG - a close relative of RunNot which adds a CAMG, obsolete

These are utilities in bin which may also be useful but are not
called by SingleMake:

StompCMAP - utility to replace a ILBM’s CMAP with the StompList
StompList - shows format for list of transparency values
SwapCMAP - CMAP in an ILBM with one from another ILBM

A Trial Run with SingleMake

The Envir and Make4.0 drawers are already organized for use with SingleMake. Let’s run an
’thought’ example make’ to create an effect from its components. All you have to do to create an
effect is first install the FXTools 3-disk set as provided. The Install

First puts the setup file in your s: directory
Assigns nd2: to work:FXTools
Puts the rest of the directories and files in appropriate place on your Work: partition.

Then:

Decide on a name for your effect, let’s use SAMPLE

Put your Anim or ILBM file into Make4.0/csrc/Anim/SAMPLE

Put the corresponding CrUD file in Make4.0/csrc/CrUD/SAMPLE

Put the sound file for the effect’s FAST speed (if any) into Make4.0/csrc/Sound1/SAMPLE

Put the sound file for the effect’s MEDIUM speed (if any) into Make4.0/csrc/Sound2/SAMPLE
Put the sound file for the effect’s SLOW speed (if any) into the Make4.0/csrc/Sound3/SAMPLE
Put the icon ILBM you’ve designed for this effect into Make4.0/csrc/Icon/SAMPLE. If you don’t

19

AR WN=O

have your own icon designed, the SingleMake script will use a ready-made default icon already
stored in Make4.0/csrc/lcon.

7. Double-click on the Amiga Default Icon for SingleMake, and Workbench will present the
'Execute Command’ window with SingleMake already in its string gadget, so just add the name
of the effect to the string gadget (e.g. SingleMake SAMPLE) and hit ’return’. You’ll wind up
with an effect and its icon in the

Work:FXTools/Make4.0/Toaster/Effects directory with the names: SAMPLE and SAMPLE.I

Here’s the sequence of events which takes place when you execute the SingleMake script. In fact,
here’s the SingleMake script itself, all commented.

;Commented version of the SingleMake script!

:read in the file name selected by the user on the Shell command line

k file

:call the setup script to temporarily assign names for various source and destination directions of bits
;and pieces of the effect.

s:fxsetup

;***#*****************

s* Make a single croutine. By SKell, ©NewTek Inc. Feb 1994

;*****************#*##*****#***********#*#*******#*****#**************

:tell user what’s up and what effect name is being processed now

echo "
echo” Processing $VTCR/<file>"
echo "
echo >>$TEMPDIR/CROUTON.err " Processing $VTCR/<file>"

:following line only required if using the HiSoft assembler (which isn’t included with this developer
;pack - it’s a commercial assembler you can purchase)

secho >$TINC/HiSoftPath.i " INCDIR *$AINC/"

FAILAT 10

-are dates of the current CrUD source and the CrUD binary file different? i.e. - is the CrUD source
sreally new?

$MBIN/cmpdates >nil: "$SCSRC/<file>" "$CSRC/binary/<file>"
-if so, then we need to build a new effect and icon

IF WARN

20

;first delete the old ones
execute SMBAT/IfDelete "$VTCR/<file>"
execute SMBAT/IfDelete "$VTCR/<file>.I"
wait 1
copy "$CSRC/<file>" $TEMPDIR/asm1.temp

;assemble the CrUD source file in ram
FAILAT 200
$MBIN/PhxAss STEMPDIR/asm1.temp -ISTINC/, $AINC/ -O$TEMPDIR/asm2.temp

IF WARN
SKIP ErrorHandler
ENDIF
FAILAT 10

sconvert the resulting CrUD object file into binary data
$MBIN/obj2data STEMPDIR/asm?2.temp "$CSRC/binary/<file>"
delete STEMPDIR/asm?.temp QUIET

;and shove the date from the CrUD source onto the CrUD binary data file
echo "Match 1"
$MBIN/matchdate "$CSRC/<file>" "$CSRC/binary/<file>"

ENDIF

;see if there is an anim file for this effect in csrc/Anim

IF EXISTS "$ASRC/<file>"
FAILAT 10

;if 80, see if the dates match between the anim file you want to use and the date last given when this
;anim file was used in building an effect

$MBIN/cmpdates >nil: "$ASRC/<file>" "$ASRC/date/<file>"
IF WARN

;if the csrc/anim file is newer, get rid of the old effect and
execute SMBAT/IfDelete "$VTCR/<file>"
srun NumFields on this anim to measure its length

execute SMBAT/NumFields "$ASRC/<file>"
wait 1

;now slam the date from the newer csrc/anim as the anim current date

echo "Match 2"
$MBIN/matchdate "$ASRC/<file>" "$ASRC/date/<file>"
ENDIF
ENDIF

21

;1s there an icon file for this effect in csrc/icon?

IF EXISTS "$ISRC/<file>"
FAILAT 10

;if s0, see if the dates match between the icon file you want to use and the date last given when this
;icon file was used in building an effect

$MBIN/cmpdates >nil: "$ISRC/<file>" "$ISRC/date/<file>"
;if the csrc/icon file is newer, get rid of the old effect and icon

IF WARN
execute SMBAT/IfDelete "$VTCR/<file>"
execute SMBAT/IfDelete "$ VTCR/<file>.I"
wait 1
copy "$ISRC/<file>" $TEMPDIR/runnot.temp QUIET

;and run the RunNOT program on it to decompress its ILBM

$MBIN/RunNOT "$ISRC/<file>" $TEMPDIR/runnot.temp
copy $TEMPDIR/runnot.temp "$ISRC/<file>" QUIET
delete STEMPDIR/runnot.temp QUIET

;now slam the date from the newer csrc/anim as the icon current date

echo "Match 3"
$MBIN/matchdate "$ISRC/<file>" "$ISRC/date/<file>"
ENDIF

;if there was no specific icon ready to go, use the generic icon in csrc/icon (ready to go for you for
srapid prototyping without having to set up an specifically named icon file in csrc/icon each time

ELSE
FAILAT 10

;you get the picture - check date match between what exists and what you want - delete unproductive
;and unrelated earlier stuff if necessary before making new. Do RunNOT if necessary on the generic
;one, etc. and reset the current date for icon making.

$MBIN/cmpdates >nil: "$ISRC/Generic.icon” "$ISRC/date/Generic.icon"
IF WARN

execute SMBAT/IfDelete "$VTCR/Generic.icon"

execute SMBAT/IfDelete "$ VTCR/Generic.icon.I"

wait 1

copy "$ISRC/Generic.icon" $TEMPDIR/runnot.temp QUIET

$MBIN/RunNOT "$ISRC/Generic.icon" $TEMPDIR/runnot.temp

copy $TEMPDIR/runnot.temp "$ISRC/Generic.icon" QUIET

delete STEMPDIR/runnot.temp QUIET

echo "Match 4"

$MBIN/matchdate "$ISRC/Generic.icon" "$ISRC/date/Generic.icon”
ENDIF

ENDIF

22

-now do a similar sequence of date checking, delete old if necessary, use new if appropriate, etc. and
-match date when done - all on the sound files for this effect. Soundl, Sound2, and Sound3 sound
-sources (FAST, MEDIUM, and SLOW speed sound files) are all handled below similarly. Note that
:this script doesn’t fail or moan if the sound files are entirely absent - again for convenience when
;prototyping - but does handle them properly if they’re there for a final "make’

IF EXISTS "$SSRC1/<file>"
FAILAT 10

$MBIN/cmpdates >nil: "$SSRC1/<file>" "$SSRC1/date/<file>"
IF WARN

execute SMBAT/IfDelete "$VTCR/<file>"

wait 1

echo "Match 5"

$MBIN/matchdate "$SSRC1/<file>" "$SSRC1/date/<file>"
ENDIF

ENDIF

IF EXISTS "$SSRC2/<file>"
FAILAT 10
$MBIN/cmpdates >nil: "$SSRC2/<file>" "$SSRC2/date/<file>"
IF WARN
execute SMBAT/IfDelete "$VTCR/<file>"
wait 1
echo "Match 6"
$MBIN/matchdate "$SSRC2/<file>" "$SSRC2/date/<file>"
ENDIF
ENDIF

IF EXISTS "$SSRC3/<file>"
FAILAT 10
$MBIN/cmpdates >nil: "$SSRC3/<file>" "$SSRC3/date/<file>"
IF WARN
execute SMBAT/IfDelete "$VTCR/<file>"
wait 1
echo "Match 7"
$MBIN/matchdate "$SSRC3/<file>" "$SSRC3/date/<file>"
ENDIF
ENDIF

echo

: now we take all the pieces (ANIM or ILBM, ICON, SOUND1, SOUND?2, and SOUND3, and
finally the CrUD data) and APPEND them all together to create an final EFFECT!

IF NOT EXISTS "$VTCR/<file>.I"

IF EXISTS "$ISRC/<file>"
copy "$ISRC/<file>" "$VTCR/<file>.I"
ELSE
copy $ISRC/Generic.icon "$VTCR/<file>.I"
ENDIF
$MBIN/append >nil: "$CSRC/binary/<file>" "$VTCR/<file>.1"
ENDIF

23

IF NOT EXISTS "$VTCR/<file>"

IF EXISTS "$ASRC/<file>"
copy "$ASRC/<file>" "$VTCR/<file>"
ENDIF

IF EXISTS "$SSRC1/<file>"
$MBIN/append >nil: "$SSRC1/<file>" "$VTCR/<file>"
ENDIF

IF EXISTS "$SSRC2/<file>"

$MBIN/append >nil: "$SSRC2/<file>" "$VTCR/<file>"
ENDIF
IF EXISTS "$SSRC3/<file>"

$MBIN/append >nil: "$SSRC3/<file>" "$VTCR/<file>"
ENDIF
$MBIN/append >nil: "$VTCR/<file>.I" "$VTCR/<file>"

;and tell the user all is finished and well

;if the original dates matched and there really was no work for this *'make’ script to do, then say so

ELSE

echo "$VTCR/<file> UNCHANGED. It was up-to-date."

echo >>$TEMPDIR/CROUTON.err "$VTCR/<file> UNCHANGED. It was up-to-date."
ENDIF

echo " "
echo "

echo >>$TEMPDIR/CROUTON.err "

skip AllDone

ke sie sle 2 3je sfe 3¢ afe e 3 3¢ e 2k sl e sle e sfe ke e e e ke sfe Ak e e vk sk sk ke ks sk sk

;20 here if the assembler fails to process the CrUD file
LAB ErrorHandler

execute SMBAT/ErrorBeep

quit 20
LAB AllDone

;that’s all folks - end of the SingleMake script

she vk 3k sk 3k sk vk 2k ske 3k 3k sk ok vl e ke sk ke 2k ok sle 3k sk ok sl vk ke 3k 3k dke e 2 2fe ke 2k ske sk le e e vk ke 2o 24 2k ok ol e ke ke ke sk ok ok vk sk 34 e K 2k ok sk ok ake ok sk A ke 3k ke 2k sde sk K

24

Summary of FX Creation and SingleMake

All the pieces of several effects are provided in the Make4.0 directory and its subdirectories. You can
see that when you create an effect, you give all the parts (the CrUD, the ILBM or ANIM, the
SOUNDI1, SOUND2, and SOUND3, and the ICON parts) all identical names. The SingleMake script
looks to see if there are matchmg "last created date’ entries for your effect in the following
subdirectories of the effects environment drawer (using the CmpDates program in

FXTools/Envir/bin):

Make4.0/Toaster/Effects/name FXcrouton date
Make4.0/Toaster/Effects/name.1 crouton icon date
Make4.0/csrc/CrUD/Date/name crouton data file date
Make4.0/csrc/ANIM/Date/name anim/ilbm file date
Make4.0/csrc/SOUND1/Date/name sound] file date
Make4.0/csrc/SOUND2/Date/name sound? file date
Make4.0/csrc/SOUND3/Date/name sound3 file date

Maked.0/csrc/ICON/Date/name

icon image file date

If matching dates aren’t found, SingleMake assumes it needs to create the currently named effect

from the parts found in:
Make4.0/csre/CrUD/name CrUD source file
Make4.0/csrc/ANIM/name anim/ilbm file
Make4.0/csrc/SOUND1/name sound] file
Make4.0/csrc/SOUND2/name sound? file
Make4.0/csrc/SOUND3/name sound3 file
Make4.0/csrc/ICON/name icon IFF ILBM file

and it updates the Date subdirectories as it goes, then puts the final results in
FXTools/Make4.0/Toaster/Effects. SingleMake also updates the Date subdirectories with exactly
matching date stamp files (using the MatchDate program in the FXTools/Envir/bin directory) so 1f
you try to re-do exactly the same effect creation nothing will happen (because all the dates match).
SingleMake will only re-do those parts of its job which it thinks it needs to by finding mis-matched
dates on components of the effect.

FX Creation Examples

There are three example FX creation in the Make4.0 drawer which areready for 're-creation’ with
SingleMake.

1. Wipe Twisting Neon Bands

This effect has a Make4.0/csrc/CrUD drawer source file (we got a detailed look at that earlier), an
ILBM single image in the Make4.0/csrc/ANIM drawer, and an ICON image IFF ILBM in the
Make4.0/csrc/ICON drawer. To re-create this effect, simply open the Envir/Bat drawer, tell the
Amiga Workbench to *Show All Files’, then double-click on the SingleMake icon. The Workbench
will present its Execute Command window with SingleMake already in the string gadget. Just make
the string gadget say:

SingleMake "Wipe Twisting Neon Bands"

and hit ’return’. Remember, you need a space character after SingleMake and you do need the quote
characters because this file name has spaces in it. You can observe the process by which SingleMake
dces its file date comparing, assembly of the CrUD file by the PhxAss assembler, conversion of the
CrUD assembled object file to binary data only with the Obj2Data program, processing of the ’anim’

25

(in this case only a single ILBM image - and SingleMake will say so!) with the AnimLen program,
processing of the icon ILBM IFF image into an uncompressed IFF file with the RunNot program,
forced matching of dates with the MatchDate program, etc.

All of the NewTek programs used by the SingleMake script (e.g., CmpDates, MatchDates, Obj2Data,
RunNot, PhxAss, AnimLen, etc.) are in the FXTools/Envir/bin drawer.

If you execute the SingleMake "Wipe Twisting Neon Bands" as instructed above, you’ll observe the
SingleMake script in action and when it’s finished you can look in the FXTools/Toaster/Effects
drawer and find the finished "Wipe Twisting Neon Bands" effect crouton file and its icon.

2. and 3. Camera Iris and Giraffe

You can try the same procedure on the Camera Iris and Giraffe effects examples, which are also pre-
arranged with their respective components ready-to-go in the respective Make4.0/csre/xxx drawers.
Note that Camera Iris has a true ANIM file in the Make4.0/csrc/ANIM drawer (unlike Neon Bands,
which was just a single image), and it also has a sound file in the Sound1 drawer. Of course, Camera
Iris, like alieffects-under-construction, has a CrUD source file in the Make4.0/csrc/CrUD drawer, too
(also detailed earlier).

Giraffe has a full animation, too. 1’ve also put the original parts of the Giraffe animation (the Latch,
Encoder, and Alpha separate animations) in the Make4.0/csrc/ANIM drawer for you to examine and
experiment with using BitPlay and AnimTool (in the root of the FXTools drawer) later. But for the
time being you can simple go through a trial ’re-creation’ of the Giraffe effect, too, using the
technique shown above to activate

SingleMake "Camera Iris"
and
SingleMake Giraffe

with the Workbench’s Execute Command window and string gadget.

Rolling Your Own - Making Your Own *Neon Bands’ Effect

Now that you see what pieces are required to construct an effect crouton and its icon, you can try
substituting your own color cycling image for the one in the Twisting Neon Bands effect. Here’s
what you need:

1. Make a 768x480 256-color AGA image using only the first 240 colors in the 256-color palette

(leave colors 240-255 as black).

Save your image with the name MyImage into the Make4.0/csrc/ANIM drawer.

Make a miniature, 80x50 pixel 4-color version of your image, perhaps with DeluxePaint or some

other program which lets you re-size your image or cut it as a brush and then re-size it..

Save the miniature, 80x50 pixel 4-color version with the name MylImage into the

Make4.0/csrc/ICON drawer.

Make a copy of the CrUD source file we already have available, namely, the "Wipe Twisting

Neon Bands" CrUD (from the Make4.0/csrc/CrUD drawer) and name it

Make4.0/csrc/CrUD/MyImage (just re-create the CrUD with a new name).

Now you have the essential components required to make your own effect, named Mylmage,

which will work quite like the *Wipe Twisting Neon Bands’ effect.

7. Run the SingleMake MyImage command as shown earlier for the other examples (using the
Workbench Execute Command string gadget to set it up)

woR WN

o

26

8. When SingleMake is finished, just copy the finished effect crouton file and its corresponding
icon file (Make4.0/Toaster/Effects/MyImage and Make4.0/Toaster/Effects/MyImage.i files) to
your ’real’ Toaster Effects drawer and try it out!

When you run your MyImage effect you’ll probably notice it doesn’t work quite as smoothly and
nicely as the real "Wipe Twisting Neon Bands’ effect does. That’s because the original was
developed so its color palette and CrUD Color Table were closely matched - making the sliding color
masking toaster source control bits perfectly designed in the CrUD for that original color palette.
You can try to perfect your MyImage effect further by trying a couple of things:

1. Try ’stealing’ the color palette from the original *Wipe Twisting Neon Bands’ image file in the
Make4.0/csrc/ANIM drawer and apply that exact color palette to your Mylmage picture and re-
do the SingleMake process.

2. Try studying the detailed impact of specific color palette masking control tag items in the
original *Wipe Twisting Neon Bands’ CrUD file and re-arrange them as you think they may
better apply to the palette you used in your MyImage picture, then re-create the effect crouton
again with SingleMake.

Making Your Own Camera Iris-like Effects

You should be starting to get the picture of how to use the FXTools environment to make FX
croutons which are analogous to the three examples provided here. If you want to make something
like the Camera Iris, simply create your own ANIM which is a 4-color anim file sort of like the
Camera Iris (it can even be one more like a KiKi effect as those are quite similar and use a similar
CrUD source file). Save the appropriate pieces (an ANIM, a CrUD, and an ICON) in the appropriate
drawers and run the SingleMake on YOUR effect. Remember to keep all the names identical for the
component parts. You could make an animation of four blocks which move in from the corners of
the screen and then back away into the same corners again, or you could make an animation which
moves across the screen like a KiKi effect "shadow’. The possibilities here are pretty diverse.

Making Your Own Giraffe-like Effects

These are a bit more complicated, but they follow the same principles as the other ’roll-your-own’
examples above. Before you try this one yourself, you really need to examine the 3 component
animations of the original Giraffe effect to see how they work and how you might ’imitate’ them for
your own work. Brilliance (from Digital Creations) has excellent animation loading and playing
tools to let you examine the component animations in detail. You’ll find the original Giraffe
component animations in Make4.0/csrc/ ANIM/Giraffe.Latch, Giraffe. Alpha, and Giraffe.Encoder.
To see how BitPlay 'merges’ them together into a single final anim file for use in creating the actual
effect, see the Maked4.0/csrc/ ANIM/Giraffe animation file by loading it into Brilliance, too. To create
a proper animation for a high-color Giraffe-like effect:

1. Make a 32-color animation and DO NOT USE THE TOP TWO COLORS (leave colors #30 and
#31 black, and don’t use them in your animation imagery). This is your *.Encoder’ animation
file.

2. Make a 2-color animation (black and white) which follows the main character of your
".Encoder’ animation across the screen. If you intend to use the same CrUD file ’ripped’ off
from the Giraffe effect, you’ll find that where you use the O-color in the ’latch’ animation is
where the "main’ source video will show and where you use the 1-color in this ’latch’ animation
1s where the ‘new’ source video will show. You should arrange that the *break’ from 0-color to
1-color lies in the center of your *Giraffe’, and not simply along one edge.

277

3. This part is harder. You make a 4-color animation which lets the video sources smoothly ramp
up from the 'new/overlay’ source video into your "Giraffe’ along its left edge and then smoothly
ramp down from the *Giraffe’ right edge into the old/main’ source video. The purpose of this
".Alpha’ animation is to smoothly vary the transparency and smooth the edges around your
"Giraffe’ (or whatever it is that plays the same role as the good old Giraffe did). Here's where
you’ll really benefit from closely examining the Giraffe.Alpha animation file (in
Make4.0/csrc/ANIM) with a program like Brilliance so you can see which of the four colors
plays each of the transparency level roles in the real Giraffe effect.

If you use Brilliance to examine all three of these component anims and then to view the end result
anim you'’ll get the full picture of the role each component plays in constructing the full anim used in
the effect (done with BitPlay). Like we did with the other two examples, you can copy the CrUD
source file outright from the Giraffe effect and use it for your own ’analog’ of the Giraffe. You’ll
have to be a bit more careful in constructing the anim than you had to be with Camera Iris (a much
simpler type of effect) but there’s no reason you can’t create highly colorful animated transition
effects along the lines of Giraffe after you master the art of making component animations and
merging them with BitPlay (and possibly fine-tuning them with AnimTool).

Using BitPlay

The BitPlay program is in the root directory of your FXTools drawer. BitPlay merges the component
animations of a Giraffe-like effect (the 'latch’, *alpha’, and ’encoder’ animations) into a final
animation for creating the effect. BitPlay can actually run the whole process, including the creation
of a CrUD source file, creation of the final effect animation, and execution of the SingleMake script
to complete the whole job.

BitPlay is pre-set to expect a few ’assigned” Amiga volume names:

W: the root directory in which the animation component subdirectories are found
W:L the subdirectory for the *Latch” animation

W:A the subdirectory for the *Alpha’ animation

W:E the subdirectory for the ’Encoder’ animation

Process: the directory in which BitPlay can find the AnimSplicer program

ASRC: the directory into which you wish the completed effect animation to be stored

MBAT: the directory in which BitPlay can find the MakeEffect script (just a copy of the
SingleMake script described earlier, BitPlay is *hard-coded’ to look for MakeEffect)

DTBL: the directory in which the CrUD source file is to be created by BitPlay

I’ve provided a little script, DoBitPlay, which performs these assigns appropriately for our test and
experimentation purposes as we re-create the Giraffe effect starting from ’scratch’ (starting, that is,
from only the component animations and a pre-created effect Crouton icon from the existing Giraffe
effect file). Here is the DoBitPlay script (as provided on the updated NTDevCon disk’s ’s’
directory):

28

FkkkkkkdkkkdkikkkbrriRbddbkkhkkkbhbkkkkhrrkrRkkihkkkrbkkhkrkkEk

DoBitPlay Script - by Daniel Wolf 12/7/94

Assign w: ram:

Assign Process: Work:FXTools

Assign ASRC: work:fxtools/make4.0/csrc/Anim
Assign DTbl: work:fxtools/make4.0/csrc/CrUD
Assign MBAT: work:fxtools/envir/bat

Failat 20

makedir w:d
makedir w:a
makedir w:e
makedir w:l

copy work:fxtools/make4.0/csrc/anim/Giraffe.Encoder w:e
copy work:fxtools/make4.0/csrc/anim/Giraffe.Latch w:l
copy work:fxtools/make4.0/csrc/anim/Giraffe.Alpha w:a

work:fxtools/bitplay

she 5j¢ 2 2 3k ke 3k ok o 3 24 sk 24 3k sk ale e 3¢ 3k 216 3k 346 e 3 sk sk e 2 3k sk ol e 24 2k e 3¢ 2k Ae sk k¢ 3k e 24 e e 3k 2k 3k 2k 3k 2k e vk ol 3k b ok sk vk dle ke vl e ke ke ok

Note that I’ve made life simple with this script by letting most of the BitPlay stuff take place in the
Amiga ram disk. You’ll probably need a couple of megabytes or so of ram.

Let’s go through a test run of BitPlay and let it build a B-version of the Giraffe Effect from the
component animations.

Open a Shell window.
Type in: DoBitPlay (and hit ’Return’)
You’ll now see the BitPlay program’s window open and present you with a series of string gadgets
which need to be filled.
Click on the question mark button next to the string gadget labelled Alpha
The file requester will appear (pre-set to the W:A directory) and you should select the file
’Giraffe.Alpha’ and then click on the OK button of the file requester.
Click on the question mark button next to the string gadget labelled Encoder
The file requester will appear (pre-set to the W:A directory) and you should select the file
"Giraffe.Encoder’ and then click on the OK button of the file requester.
Click on the question mark button next to the string gadget labelled Latch
. The file requester will appear (pre-set to the W: A directory) and you should select the file
’Giraffe.Latch’ and then click on the OK button of the file requester.
10. Click on the button labelled AA (this will be an AA effect for AGA Amigas only)
11. Click in the string gadget at the top labelled Current Effect
12. Typein: GiraffeB (and hit return)
13. You’ll see immediately that the string gadget labelled Output (at the bottom) gets filled in
automatically and now says: W:GiraffeB
14. There’s one more string gadget of interest, labelled Data Table. If you leave this blank, BitPlay will
create a completely fresh CrUD file for GiraffeB in the DTbl: directory (which we’ve conveniently
assigned to be the work:FXTools/make4.0/csrc/CrUD directory - precisely where we want it). If
instead you click on the question mark button next to this string gadget you can select a pre-existing
CrUD file from the DTbI: directory and BitPlay won’t create its own new one. Leave this string
gadget blank so BitPlay will create a new CrUD source file named GiraffeB.
15. Now simply click on the GO button at the bottom of the BitPlay window.
16. BitPlay now goes into action. It reads in the three component animations and creates, frame by
frame, the individual 8-bitplane composited frames needed to build a Giraffe effect animation with

29

I T e

the appropriately sorted bitplanes (see lengthy discussion above on bitplane sorting for colored
animation effects). This may take a few minutes as BitPlay must process 120 frames for the
Giraffe effect.

17. When BitPlay itself finishes the creation of the individual composited 8-bitplane frames, BitPlay
calls on the AnimSplicer program from the Process: directory (also located in the FXTools
directory root and conveniently pre-assigned as Process: in the DoBitPlay script) to stitch all the
frames back together into a final Giraffe animation. AnimSplicer will then put the result, the
GiraffeB effect anim file, into the ASRC: direcotory (which we’ve already conveniently
assigned to be the work:FXTools/make4.0/csrc/Anim directory - just where we need it).

18. Now BitPlay calls on the MakeEffect script (just a copy of the SingleMake script in the MBAT:
drawer, conveniently pre-assigned by DoBitPlay as the work:FXTools/envir/bat drawer) and
goes through the same set of steps we’ve already discussed (above) to check dates, assemble the
CrUD object file, and merge the newly created anim file with the CrUD, etc to create a finished
GiraffeB effect. The end result, just as with our earlier experiments with SingleMake, is a
finished GiraffeB effect and its corresponding icon file, GiraffeB.I, in the
work:FXTools/make4.0/Toaster/Effects drawer.

Note that if you really want a nice icon for the GiraffeB effect, you should copy the original Giraffe
effect’s icon file (copy work:FXTools/make4.0/csrc/Icon/Giraffe.l to
work:FXTools/make4.0/csrc/icon/GiraffeB.I) before you do the BitPlay GO. Don’t worry, if you
don’t do that, remember that the MakeEffect script (same as SingleMake) will use a default icon (the
Generic icon) which is already there in the Icon directory.

With the completed effect and its icon now in hand, you can simply copy them to the Effects/Animals
drawer of your Toaster system and try them out! '

NOTE: The version of BitPlay supplied appears to make slightly *buggy’ CrUD files. An update
should be available soon, but in the meantime you may wish to re-create the effect with SingleMake
(using a copy of the real Giraffe CrUD file supplied here) AFTER BitPlay has done it. The final
effect anim created by this version of BitPlay does appear to be correct, so for the time being,
BitPlay’s main use is to merge the component animations only.

30

r'r-r e L L -
S S R il

%?w-u o
f%*?'ﬁ?‘s—;

=N -'-..:
"'l"':ﬂ":"-':""‘"'l o .:-..H'.'.-_.':""_._.';'
e o

-I—'-I'I-ﬂd-r.i-_-_.-q.u.-l:.lrm:“ﬁ S

1-

10k,

ST T T

BT =S
n

AlgoFX For the Video Toaster
by Daniel Wolf
10/26/95

Digital video switching effects (DVEs) for the Video Toaster encompass a very large subset of the
available and interesting Toaster switching effects. What sets them apart from the other classes of
Toaster effects is the mechanism by which they are generated as real-time video warps and maps.
The digital Toaster FX include video fly-ins and fly-outs, slats and blinds, mosaics, and many more.
The circuit mechanisms by which they are performed on-the-fly is sophisticated, but making and
modifying them is easy. Among Toaster developers and programmers, these are known as ’Algo’
effects (AlgoFX for short) because they are created by algorithmic methods. First a brief, partial
explanation of the Toaster’s DVE capabilities and then we’ll present a DVE-creation environment
with an example.

Video Toaster DVE Theory

The Toaster can continuously digitize, store, "undigitize’ and replay an incoming NTSC video signal.
See Figure 1, top portion, and note the digital video frame stores (RAMO, RAM1) and the digital
video flow pathway (ADC, FIFO, RAMO0/1, DAC0/1). When the Toaster is in "digital’ mode, the two
frame stores (which are shown as highlighted buttons on the Switcher screen in digital mode) contain
digitized versions of whatever video source is incoming on the MAIN Toaster bus. Except for a very
brief switchover delay when the Toaster enters its digital mode, you may not see any difference
between the Toaster’s output when it is in digital mode and when it is not. The Toaster’s digital
mode is familiar to almost all Toaster users who’ve played around with the digital warping transition
effects that made the Toaster so popular. The contents of the two framestores are continuously
updated and the video which is being digitized, undigitized, and replayed ordinarily appears as any
other video source to the Toaster, with the exception that it is very slightly delayed by this process.
What goes into the framestores immediately comes out with virtually no change - unless a DVE is
taking place.

The digital framestores are simply X,Y arrays of digitzed video values (D2 values). The key to
Toaster DVEs is a circuit which can change the order in which the D2 values are played back out of
the framestore arrays. If we could rearrange the X,Y arrays fast enough, you can imagine that we
might digitize a field of video, turn it upside down (VERY quickly) and then undigitize it and play it
out. We’d only have a few milliseconds to completely rearrange the X,Y array in the framestore,
though. The Toaster isn’t quite that fast. Once a field of video is digitized into the framestore
memory (on-the-fly), though, the way it will appear a moment later when it is 'undigitized’ depends
on the X,Y addressing scheme we apply to the "undigitizing’ circuit. Figure 1 shows the DVE ADDR
GENERATOR (the DVE Address Generator), connected to the two framestore memories in the
digital video pathway at the top. The Toaster can apply various schemes of X,Y addressing to the
framestore’s 'undigitzing’ process so that the D2 values come out of the framestore memory in a
different order than they entered. There are two limitations. Because the Toaster can’t do an
arbitrary rearrangement of the whole field all at once, it must operate one line at a time. That means
the Toaster can only perform real-time horizontal rearrangements. The other limitation is part of the
nature of D2 video. It takes four pixels of D2 video to properly reconstruct the color of any one of
those four pixels. D2 works in ’quads’. So the Toaster can only rearrange groups of four pixels at a
time. Within those two limitations, the Toaster is free to digitally rearrange video on-the-fly as it
passes through the framestore memory arrays. Any 'quad’ of pixels can be extracted from its original
position on a line of video and made to appear at a different location.

Toaster algorithmic DVEs (an Algo FX) feeds the DVE Address Generator according to formulae
(algorithms) manipulated in software. You can imagine without much difficulty that we might
program a series of horizontal rearrangements of pixel quads to make the video appear to undergo a
series of changes which look like it is being squeezed or unsqueezed horizontally. The algorithm for
doing that is fairly simple - we can take pixel quads from the edges of the video frame store array

1

and move them closer to the center. As we progress, we may simply leave out every other quad as
the squeeze proceeds to 1/2 of the ordinary picture’s width. And so on. If we apply a series of image
rearrangements like this fairly quickly we can make a very good (if not quite perfect because of the
quad limitation) squeezing effect.

The AlgoFX are a family of DVEs based on fairly simple algorithms for manipulating the DVE
Address Generator in real time. Now that you’ve been introduced to the basic AlgoFX ideas, you can
see how blinds, slats, bouncing transitions, mosaics, and so on are all variations on the same theme of
image rearrangement in the digital video framestores. As the contents of the frame store memories
are replaced every 1/60 of second with a new video field’s D2 values, the DVE Address Generator’s
’look-up-table’ gets updated by the Toaster with a series of address rearrangements for the pixel
quads. As long as we can change the addressing scheme for the frame store memories every 1/60 of a
second, we can make a series of pixel quad rearrangements appear to move the video smoothly.
AlgoFX are made of a series of look-up-tables which can be created in real time. The algorithm for
creating a series of look-up-tables which make a square appear to squeeze into a vertical line and
disappear is pretty easy to make and to update in real time.

AlgoFX can be spotted by any eagle-eyed Toaster user. True AlgoFX don’t cause the Toaster’s
Switcher display screen to temporarily vanish and shimmer with dim vertical bars or animated
shadows. AlgoFX are one kind of Toaster effect which doesn’t involve playing Amiga screen
graphics to control the Toaster’s output on every video pixel. Some Toaster DVEs do show the
typical animated dim vertical bars during the effect. Those are a hybrid type of effect in which the
DVE Address Generator is operated by an Amiga animation instead of by simple equations. Some of
the more complex Digital FX work this way instead - as there is no fast software formula to calculate
the series of address look-up-tables in real time. The fast mappings of video onto spheres, etc. are of
this hybrid type and aren’t true AlgoFX, they are in the hybrid class of Anim/DVEs. These mappings
are performed via Amiga animations playing into the DVE Address Generator. True AlgoFX are
purely software devices and leave the Toaster display intact. All the DVEs which are digital in nature
(which use the DVE Address Generator applied to digitized video in the framestore memories) force
the Toaster into its digital mode, though, and clear whatever was in the Toaster’s framestores before
the effect took place. DVEs always highlight the two framestore buttons on the Switcher display.
The hybrid DVEs do, however, reveal the limitation of the Toaster’s DVE Address Generator. If you
play them slowly, you’ll see that they always consist solely of horizontal rearrangements.

All of the other issues related to AlgoFX are based on the operation of the Toaster as explained in the
document, NewTek Video Toaster FX Theory (11/28/94). The multiplexer and analog video routing
through the two-source video fader is the same as for any group of effects. Notice on the diagram
that the AMUX and BMUX both can pass video from the "undigitizing’ circuits (digital to analog
converters, DACO and DAC]1) out to the Fader. That lets the AlgoFX-modified video from one
source mix with and fade replace or be removed from another source. AMUX might send video from
the DACs to one end of the Fader while BMUX sends a different source to the other end. The
Fader’s alternation between the two sources can be triggered by any of the inputs to the FCMUX.
When video is squeezed by an Algo effect, the DACs may output a value of 0 in those areas where
video has been 'removed’ so that a hard LUMKEYA value of 1 or 0 could swing the fader completely
to the other non-squeezed video source in those areas. That’s precisely what you see when video is
moved onto or off the Toaster output via an Algo effect. Those areas which have been squeezed or
cleared show through (via the Fader, pixel by pixel if necessary) to the other video source.

The AlgoTools Development System

The AFX_CF disk will install a set of development tools you can use to modify and produce new
Algo DVEs for the Toaster. The toolkit is quite similar to that presented at the December, 1994
NewTek DevCon for creating anim and color cycling effects. The complete AlgoFX toolkit consists
of two drawers, Envir and Make4.0. The Envir drawer contains all the Toaster assembly language
include files in the Inc subdirectory (current revisions of eflib.i, tags.i, crouton.i, etc.), the binary files

2

(PhxAss assembler, date comparison, file merging functions, etc.) in the Bin subdirectory, and the
Batch or script files in the Bat subdirectory. For your convenience, I've rewritten the setup and
makefile scripts so they will operate in your Amiga system (without having the whole NewTek
network file system present). When you install the AFX_CF disk, the AlgoSetup, AlgoMake.DW,
and KillAlgo scripts will be placed in your s: directory.

The Make4.0 drawer contains CrUD (Crouton User Data) source files (see NewTek Video Toaster
FX Theory, 11/28/94), a generic crouton Icon file, and the Toaster/Effects drawer into which the
AlgoMake.DW script will put each finished effect. This toolkit contains all the CrUD source files for
currently implemented AlgoFX.

Because this version of the effects environment toolkit doesn’t have to work with large anim files,
I’ve modified the AlgoSetup script (which is called when you first execute the AlgoMake.DW script
on a Crud file) to move the whole environment to ram: for speed and convenience in prototyping
AlgoFX.

Creating an Algo DVE with AlgoMake.DW
As presented in the earlier FX creation tools documentation, the process of making an effect is:
1. Create (or modify an existing) a CrUD source file

It is easiest to simply work with existing CrUD source files and modify them with a text editor.
CrUD source files for AlgoFX are highly stereotyped and contain all the necessary elements ofa
complete effect in a few variables and constants at the end of the CrUD source itself.

2. Execute the AlgoMake.DW script with your selected CrUD file as its argument
Like this:
AlgoMake.DW AlgoCrUDFileName

The AlgoMake script first calls the AlgoSetup script which moves the AlgoTools drawer into your
ram disk and creates numerous assigns to the existing constellation of directories in the AlgoTools
drawer. For example, CSRC becomes an assign name for the CrUD source file drawer,
AlgoTools/Make4.0/Csrc/CrUD. If you’d like to study and review it, the AlgoMake.DW script is
virtually identical to the SingleMake script which was annotated and printed in the NewTek Video
Toaster FX Theory (11/28/94) document. If you examine the contents of Make4.0 and Env ir, you’ll
find they closely resemble those supplied as part of the FXTools system (which included anim,
sllladogw, and color cycling effects) at DevCon94 and described in the document FX Theory document
(11/28/94).

Creating a new Algo effect is as simple as the two steps above, and as complicated as manipulating
the data items in an Algo CrUD file. There are a number of classes of AlgoFX and literally dozens of
CrUD files included in this package, so we’ll examine one of them and use it as an example of how to
modify one effect to create a new one or two. Additional experimentation with the other myriad of
CrUD files is left as an exercise for the developer.

An Example Algo DVE - Blinds 3 Expand

The following is a complete printout of the CrUD source file for the Blinds 3 Expand Algo effect,
with a little added commentary. If necessary, please review the NewTek Video Toaster FX Theory
document (11/28/95) to recount the basic structure of a CrUD file. The CrUD file for an Algo effect
of this type (blinds) consists of only a few tags (which are defined in the tags.i file included on the
first line, and which you can find in the AlgoTools/envir/inc drawer). The tags which you should
note immediately below are the tag macros CrUD_START and CrUD_AlgoFX which define this
type of effect CrUD source as an Algo effect (the definitions for these tag macros are in tags.i). The
other interesting tag is the last one, TABLE_Equations which form the real essence of an Algo effect
CrUD - they point to the collection of constants at the end of the CrUD file itself which are the
parameters the Toaster’s internal Algorithmic Effect generator interpret to manipulate the DVE
Address Generator. The last constant in the TABLE_Equations set is the number, 3. Note the
comment here indicates the this number denotes the number of rectangles (blinds) for this effect.

include "tags.i"
CrUD_START CrUD_AlgoFX,CrUD 4 0,CrUD_BWIcon

TAG_FCountMode l
TAG_VariableFCount 0

TAG_SlowFCount 60

TAG_MedFCount 45

TAG_FastFCount 30

TAG_AlgoFXtype ALGT_StdDigitalFX
TAG_ButtonELHlogic ~AFXT Logic TDEon

TABLE_ Equations

10$ de.l 20$-10% ;always points to Time Variables
dc.] DEF _REVERSE ;modes
; dew 3 ;num rectangles horizontally
208%:

Guess what happens if we change the 3 to a 2, above, with no other changes to this CrUD source
file....

The following comments can guide you when you explore the meanings of some of the tag and
constant defnitions in tags.i, eflib.i, rect.i, crouton.i, etc. Note the *03=linear ...” comment which
informs us that the four numbers following a "LINEAR’ tag constant later in this source file will
indicate the distance and speed variables which move the rectangles at a constant speed. The
"04=accelerated ..."” comment informs us similarly about the meanings of the five numbers which
accompany a ’ACCEL’ tag. This effect does indeed use LINEAR tags to specify motion of the three
rectangles which make up this effect (see below).

;00 = end of table
;01 =ignore
;02 = constant WORDvalue

;all 03,04,05 parameters are binary reals (LONGS)
;03 = linear initDistance, speed, minDistance, maxDistance
; mind <= sp*t+id <= maxd

;04 =accelerated initVelocity, accel, minSpeed, maxSpeed, initDistance
; (minsp <= ac*t+iv <= maxsp)*t + id

4

Harmonic motions are bouncing motions in a sinusoidal manner. You’ll see them used in some of the
effects which move video onto or off the screen in a jiggling manner.

;05 = harmonic initFreq, deltaFreq, minFreq, maxFreq, initPhase,
; iAmp, deltaAmp, minAmp, maxAmp
: (minam <= da*t+ia <= maxam)*t * SIN[(minfr <= df*t+if <= maxfr)*t + ip]+os

Now we find a fixed-structure table of values which designate the horizontal (X) behavior (scaling) of
each of the three rectangles. Note that this type of effect can have only a single Y behavior which
governs all of the rectangles the same way, but X behavior can be manipulated differently for each
rectangle. That’s handy, as we really do wish to (at least) place each of the rectangles at different
horizontal positions. The ET_DVEIX tells the Toaster’s AlgoFX software that this is the start of the
position and motion table of values for rectangle #1. Later you’ll find ET_DVE2X and ET_DVE3X
which denote similar table start declarations for the other two rectangles in this effect. Each of the
rectangle position and motion tables is in a fixed form and the comments you’ll find tell you the
meaning of each item. TVT CONST means the following value is a constant for the whole effect.
TVT_LINEAR denotes a set of four numbers follows which dictate a linear (smooth) motion, etc.
SXMIN means Source X Minimum, the leftmost position from which source video will arise (0).
SXSIZE is the Source X Size in *quads’, namely a full screen width (185 quads). The values for
these and most of the other constants (DXMIN = Destination X Minimum, SXMAX, etc.) are found
in croutons.i.

:XSCALE 1
dc.w ET DVEIXI1

;borderUpper
dc.w TVT_CONST
de.w $0000

;borderLower
dc.w TVT_CONST
dc.w $0000

We want the center position of the leftmost rectangle’s source video, which will occupy one third of
the screen, to originate 1/6 of the way from the left boundary of the source video.

;position

dc.w TVT_CONST

dc.w SXSIZE/6
The minimum width of the source video is 2 quads.
;srcMin

dc.w TVT_CONST

dc.w SXMIN
The maximum width of the source video for this rectangle is 1/3 of the source’s total width.
;srcMax

dc.w TVT_CONST

dc.w SXMIN+SXSIZE/3

The center of the region of source video from which this rectangle is drawn is 1/6 of the way from the
left of the source video boundary.

5

;SICAXIS
dc.w TVT_CONST
dc.w SXMIN+SXSIZE/6

You can see that the destination positions and axes are arranged to correspond to the positions at
which we want the source video to be ’painted’ into the destination frame.

;destMin
dc.w TVT _CONST
dc.w DXMIN

;destMax
dc.w TVT_CONST
dc.w DXMAX

;destAxis
dc.w TVT_CONST
dc.w DXAXISMIN

The size of the rectangle will increase from thin to thick (see comments earlier in this file which
summarize the meaning of the four numbers which follow this tag).

seffectSize
dc.w TVT_LINEAR
dc.l (SXSIZE/3+1)<<16,-(SXSIZE/3+1)<<16,$00000000, MAXLIMIT

seffectColor
dc.w TVT_CONST
dc.w $0000

;borderColor
dc.w TVT_CONST
dc.w IGNORE

;backgroundColor
dc.w TVT_CONST
dc.w BGCOLORX

;overscanColor
dc.w TVT_CONST
dc.w IGNORE

This denotes the end of the position/motion table for this first rectangle.
dc.w TVT_END

Here is the start of the position/motion table of values for the second rectangle.

;XSCALE 2
dc.w ET_DVE1X2

;borderUpper
dc.w TVT _CONST
de.w $0000

;borderLower
dc.w TVT_CONST
dc.w $0000

The position of this rectangle is in the center (x-size divided by 2).

;position
dc.w TVT_CONST
dc.w SXSIZE/2

The minimum x position of source video for this rectangle starts 1/3 of the way from the left of the
source (the first rectangle starts all the way at the source video’s left edge).

;srcMin
dc.w TVT_CONST
dc.w SXMIN+SXSIZE/3+1

The maximum x position for the source video of this rectangle is 2/3 from the source’s left edge.
This rectangle will bring in the middle 1/3 of source video onto the screen. Compare this value to
that of the previous rectangle which brings in the leftmost 1/3 of source video.

;srcMax
de.w TVT_CONST
dc.w SXMIN+(SXSIZE*2)/3

The axis for the source video of this rectangle is in the center of the source video.

;STCAXIS
dc.w TVT _CONST
dc.w SXMIN+SXSIZE/2

;destMin
dc.w TVT_CONST
dc.w DXMIN

;destMax
dc.w TVT_CONST
dc.w DXMAX

;destAxis
dc.w TVT_CONST
dc.w DXAXISMIN

Again we prescribe a linear smooth motion for this rectangle but it must start at a different position
(InitDistance) than the previous rectangle. This one will start 1/3 of the way across the destination.

seffectSize
dc.w TVT_LINEAR
dc.l ((SXSIZE*2)/3-(SXSIZE/3))<<16,-((SXSIZE*2)/3-
(SXSIZE/3))<<16,$00000000,MAXLIMIT

;effectColor
dc.w TVT_CONST
dc.w $0000

;borderColor
dc.w TVT_CONST
dc.w IGNORE

;backgroundColor
dc.w TVT _CONST
dc.w IGNORE

;overscanColor
dc.w TVT_CONST
dc.w IGNORE

Here’s the end of this rectangle’s X data table.

de.w TVT_END

Here’s the start of the rightmost (third) rectangle’s X data.

:XSCALE 3
dc.w ET_DVEIX3

;borderUpper
dc.w TVT_CONST
de.w $0000

;borderLower
dc.w TVT_CONST
dc.w $0000

This is positioned 5/6 of the way from the left.

;position
dc.w TVT_CONST
de.w (SXSIZE*5)/6

;stcMin
dc.w TVT_CONST
dc.w SXMIN+(SXSIZE*2)/3+1

;srcMax
dc.w TVT_CONST
dc.w SXMAX

The axis corresponds to the position, SXMIN (nearly zero) plus 5/6 of the SXSIZE.

;STCAXIS
dc.w TVT_CONST
dc.w SXMIN+(SXSIZE*5)/6

;destMin
dc.w TVT_CONST
dc.w DXMIN

The rectangle extends to the bottom of the screen.

;destMax
dc.w TVT_CONST
dc.w DXMAX

;destAxis
dc.w TVT_CONST
dc.w DXAXISMIN

Again we see a linear motion for this rectangle, but with a different InitDistance. You could change
this to:

;TVT_CONST
;dc.w SXSIZE/3

to try an interesting variation in which this rectangle would come onto the screen at a fixed size and
stay that way throughout the effect instead of varying linearly.

seffectSize
dc.w TVT_LINEAR
dc.l (SXMAX-SXMIN-(SXSIZE*2)/3)<<16,-(SXMAX-SXMIN-
(SXSIZE*2)/3)<<16,$00000000,MAXLIMIT

;effectColor
dc.w TVT_CONST
de.w $0000

;borderColor
dc.w TVT _CONST
dc.w IGNORE

;backgroundColor
dc.w TVT_CONST
dc.w IGNORE
;overscanColor
dc.w TVT_CONST
dc.w IGNORE
Here’s the end of the X data table for rectangle #3.

dc.w TVT_END

Here’s the start of the Y data table for all three rectangles.

dc.w ET_ DVE1Y

;borderUpper
dc.w TVT_CONST
dc.w $0000

;borderLower
dc.w TVT _CONST
de.w $0000

;position
dc.w TVT_CONST
dew O

You could try changing this to a larger value and see the source video start further down the source’s
vertical span, instead of from its top.

;:srcMin
dc.w TVT_CONST
dc.w SYMIN

You could change this to a smaller value and the source video’s vertical span would not extend all the
way to the bottom of the source video’s vertical extent. For example, SYMAX/2 would restrict the
amount of source video to 1/2 of the source’s vertical span. As the rectangles come on screen, you
wouldn’t see them bringing in all of the source, only its upper haif.

;srcMax
dc.w TVT_CONST
dc.w SYMAX

;STCAXIS
dc.w TVT_CONST
dc.w SYAXIS

;destMin
dc.w TVT_CONST
dc.w DYMIN

;destMax
dc.w TVT_CONST
dc.w DYMAX

;destAxis
dc.w TVT_CONST
dc.w DYAXIS

This tells the Toaster to bring in all three rectangles at the full size of the video’s Y dimension.

seffectSize
dc.w TVT_CONST
dc.w SYSIZE

;This will tell the Toaster to bring the rectangles in, changing their sizes linearly from small to the full
;display height during the course of the effect instead of full-height from the start - this makes an
;interesting and useful variation of the effect.

; substitute these instead to make a nifty change!

; dc.w TVT_LINEAR
; dc] (SYSIZE)<<16,-(SYSIZE)<<16,$00000000,MAXLIMIT

10

;effectColor
dc.w TVT _CONST
dc.w $0000

;borderColor
dc.w TVT_CONST
dc.w IGNORE

;backgroundColor
dc.w TVT_CONST
dc.w BGCOLORY

;overscanColor
dc.w TVT_CONST
dc.w IGNORE

;Here’s the end of the Y position/motion table of values for the rectangles.
dc.w TVT_END

This tag tells the Toaster’s effects generation software to run’ its "equations’ based on the parameters
from the tables included above.

dc.w ET_RUN
This is the end of all the tables for this effect.
TABLE_END
This is the CrUD_END macro tag (from tags.i) which tells the assembler to finish up here.

CrUD_END

The effect we’ve just examined, "Blinds 3 Expand" flies three vertical rectangles of source video onto
the screen. Each rectangle brings in 1/3 of the source onto the destination frame, is positioned at the
appropriate 1/3 of the screen, and increases in size to reveal a wider and wider vertical swath of 1/3 of
the source video until it fills the screen.

We’ll use this CrUD file as a template to experiment with a couple of potentially interesting
variations. The best way for you to gain experience with creating new AlgoFX is to intelligently
modify one or two parameters of this kind of CrUD file and use it immediatly with your Toaster to
view the consequences. Sometimes you can easily predict the results you'll obtain by making a
change (and you’ll gain experience at that with time). Sometimes you’ll find that a modification
doesn’t have any effect at all - probably due to exceeding a limit which is enforced by the Toaster’s
internal software AlgoFX handler. I've found no effect of modifying the border color tags
at all - maybe you can. Sometimes you’ll find completely serendipitous results arise from your
experiments. When you’ve created something new and tasty, save the modified CrUD file and keep
the effect. The environment we’ve provided, AlgoTools, is a playground for your imagination and
creativity.

Happy AlgoMaking.

DW
10/26/95

11

ey
| L

TN

R T ——

R B e
IR -

» By ol pyeiy el o <, o pf o
nlsy " Y E

= b el . B G _";.L'_-—-:“-':E-T:-l

R
2 il e s Ry el

B I ra

.-

:I..- e R = i s = B s w oy F.E-Eil’-..-
::E.'.n'.ﬁ o e'1.'-=-|' :""""“-'-—'..1__.."3

el ey N

priafolog il ngey i

-

o Th e LT

.=

e "l T, T L L e % 3f e

el

LR R R R R e R e R e s R R R R R R R

rect.i

w

*

* Copyright (c)1992 NewTek, Inc.

* Confidental and Proprietary. All rights reserved.

*

* $1d: rect.i,v 2.2 93/12/02 20:48:32 Kell Exp $
*

* $Log: rect.i,v §

*Revision 2.2 93/12/02 20:48:32 Kell

*Now has structures for dynamic Fader/LumKey/TBarTime/BMposition.
*New structures for new types of motion for 4.0
*

*Revision 2.1 93/11/06 08:45:51 Kell

*Fixed double defined label (structure name)

*

*Revision 2.0 92/05/18 21:23:54 Hartford

**** empty log message ***
*

L R R RS e L R
IFND RECT_I
RECT_TI SET 1

* if >0 do ELH
* if 3 = first
* if 5 = last

FIELDDURING EQU 0 ;transformed to DOELH or NOELH via ProcessDuring()
FIELDNOELH EQU 0 ;during stage, no elh

FIELDDOELH EQU 1 ;during stage, do elh

FIELDFIRST EQU 3 ;1st of stage, do elh

FIELDLAST EQU 5 ;may do take, do elh

FIELDREDO EQU 7 ;redraw as LAST, with elh, but logic of FIRST
DIGOFFSET SET -3 ;relation of source to dest quad position
QUAFBYTE SET Sff ;transparent digital quad

Thhk Rk kR kA Rk kR b r ok ko k ko ke kR ko ko W

STRUCTURE ScaleData, 0

;I don’t see much use in border that has a non-constant thickness, but
;maybe this could be used in advanced drop shadows someday.
WORD SD_borderUpper ;thickness of border, in destin. resolution
WORD SD_borderLower ;thickness of border, in destin. resolution
WORD SD_position ;position of srcaxis with respect to destaxis,
;in destination resolution

;source cropping and scaling axis placement.

;Source cropping on Y sources is a bit weird because of the EVENODD

;rule. So you may need to "undercut" to avoid Y scaling from falling off edge.
WORD SD_srcMin ;minimum address to ever use from source
WORD SD_srcMax ;maximum address to ever use from source
WORD SD_srcAxis ;axis to scale from

;It crashed when I tried Min/Max/Axis = SXAXIS/SXMAX/SXMIN

;Y scaling will require two srcAxis, an even and an odd one. So this
;8D_srcAxis will be one of them, and SD_srcAxis+l will be the other!

;destination cropping, defines useful underscan area
WORD SD_destMin ;minimum address to ever use in destination
WORD SD_destMax ;maximum address to ever use in destination
WORD SD_destAxis ;display coordinate origin.

WORD SD_effectSize ;width or height of effect, in dest resolution
;effectSize is place here because it has to be after srcMax & srcMin have
;been defined. Because srcSize may effect effectSize.

;the effect&bordercolors are ignored for DVE Input Effects, i.e. Trails.
;but backgroundColor is looked at when horizontal scaling.
;if vertical scaling, give least of two source lines.
WORD SD_effectColor ;>0 color of effect, -l=skip effect, 0=doit
WORD SD_borderColor ;jcolor of border, -1l=skip border

WORD SD_backgroundColor ;color of background, -1=skip bg
jcurrently overscancolor is not utilized
WORD SD_overscanColor ;jcolor of overscan area, -1l=skip os

;the Scale routine will determine the remaining elements in this structure.
WORD SD_rectMin ;minimum/maximum destination addresses that
WORD SD_rectMax ;have an effect element, on or off screen.

WORD SD_effectMin ;min/max on screen destination address that
WORD SD_effectMax ;has a scaled effect. 1Is not altered by borders.
;=—1 if no scaled effect on screen.
;Useful for pixelizing all but borders.

WORD SD_totalMin ;min/max on screen destination address that
WORD SD_totalMax ;has an effect or borders. May be altered by
;border routine. =-1 if nothing on screen.

iparameters to scale from destInit and go upward
WORD SD_destInit ;address of initial destination address
LONG SD_srcInit ;binary real, source initial value
LONG SD_srcInc ;binary real, source incremental value
WORD SD_countUp ;# of points to plot, destInc =1

iparameters to scale from destInit and go downward
;juse neg.l srcInc for downward source incremental value
WORD SD_countDown ;# of points to plot, destInc = -1

LABEL SD_SIZEOF ;size of this structure

BYTE_SIZEOF SET 1
WORD_SIZEOF SET 2
LONG_SIZEQOF SET 4

* values to use so min/max motion parameters are ignored
MINABSREAL SET 0 ;juse this if you have no min limit
MAXABSREAL SET $7fffffff ;use this if you have no max limit

* All of the variables in the Accelerate/Harmonic structures are

* binary Reals.

* So that cropping of the source does not cause scaling in the final
* effectSize, changes in crop may tweek sp, by adding

* (srcSizeNew-srcSize0Old) to sp.

STRUCTURE Linear, 0 ; mind <= sp*t+id <= maxd
LONG LM_initDistance
LONG LM_speed
LONG LM_minDistance ;value >= 0
LONG LM_maxDistance ;value >= 0
LABEL LM_SIZEOF isize of this structure

* So that cropping of the source does not cause scaling in the final
* effectSize, changes in crop may tweek iv, by adding
(srcSizeNew-srcSize0ld) to iv.

*

* (minsp <= ac*t+iv <= maxsp)*t + id
STRUCTURE Accelerate, 0
STRUCT AC_accel,LM_SIZEOF
;LONG AC_initVelocity
;LONG AC_acceleration
;LONG AC_minSpeed ;min abs(Velocity)
;LONG AC_maxSpeed ;max abs(velocity)
LONG AC_initDistance
LABEL AC_SIZEOF isize of this structure

K i e s P e o A e e

* So that cropping of the source does not cause scaling in the final
* effectSize, changes in crop may tweek ia, by adding
* (srcSizeNew-srcSize0Old) to ia.

* (minam <= da*t+ia <= maxam) * SIN[(minfr <= df*t+if <= maxfr)*t + ip] + os
STRUCTURE Harmonic, 0
STRUCT HM_frequency,LM SIZEOF
;LONG HM_initFreq

LONG

STRUCT

;LONG HM_deltaFreq

; LONG HM_minFreq
; LONG HM_maxFreq

;min
;max

abs (Frequency)
abs (Frequency)

HM_initPhase

HM_amplitude,LM_SIZEOF

; LONG HM_initAmp
; LONG HM_deltaAmp

;LONG HM_minAmp
; LONG HM_maxAmp

abs (Amplitude)
abs (Amplitude)

;min
;max

LONG HM_initOffset
LABEL HM_SIZEOF

LONG
LONG
LONG
LONG
WORD
WORD

;size of this structure

STRUCTURE DelayedLinear, 0

DLM_initDistance

DLM_speed

DLM_minDistance

DLM_maxDistance

DLM_timeStart
DLM_timeEnd

LABEL DLM_SIZEOF

;value >= 0

;value >= 0
;value >= 0
;value >0, else $10000
;size of this structure

STRUCTURE DeltaLinearData, 0

LONG

DLD_Delta

LABEL DLD_SIZEOF

;size of this structure

STRUCTURE DeltaAccelData,0

LONG

DAD_Delta

LABEL DAD_SIZEOF

F e

;size of this structure

STRUCTURE DeltaDeaccelData, 0

LONG

DDD_Delta

LABEL DDD_SIZEOF

;size of this structure

STRUCTURE DeltaSCurveData, 0

LONG

DSD_Delta

LABEL DSD_SIZEOF

;size of this

STRUCTURE DeltaBigAccelData, 0O
DBAD_Delta

LONG

LABEL DBAD_SIZEOF ;size of this

STRUCTURE DeltaBigDeaccelData, 0
DBDD_Delta
LABEL DBDD_SIZEOF

LONG

;size of this

STRUCTURE DeltaRandomData, 0

LONG
LABEL

DRD_Delta
DRD_SIZEOF

;size of this

STRUCTURE DeltaConstantData, 0
DCND_Delta

LONG
LABEL

DCND_SIZEOF

;size of this

STRUCTURE DeltaCyclicData, 0

LONG
LONG
LONG
LONG
LONG
LABEL

* If TV_function is <0 then ignore.

DCD_initAmp

DCD_deltaAmp
DCD_initPhas
DCD_deltaPha

e
se

DCD_deltaFreq

DCD_SIZEOF

;size of this structure

If TV_function

* All TV_functions will be called with;

; mind <= sp*t+id <= maxd

NULL then end of table

* al0->data (ie Accelerate/Harmonic structures),
* al->results (ie ScaleData structure field), d0=Time
STRUCTURE TimeVariablesStruct, 0
APTR TV_function ;->a motion/size function
APTR TV_data ;~>data used by the function, NULL if none
APTR TV_results ;->place to put results
LABEL TV_SIZEOF ;size of this structure

* The pixelize routines are ment to pixelize the buffX or buffy buffers.

STRUCTURE PixelizeData, 0
;jdestination cropping, defines useful underscan area
WORD PD_destMin ;minimum address to ever use in destination
WORD PD_destMax ;maximum address to ever use in destination
WORD PD_destAxis ;display coordinate origin.

WORD PD_blockSize ;width or height of effect, in dest resolution
LABEL PD_SIZEOF

STRUCTURE WipelData, 0

WORD W1D_position ;position of srcaxis with respect to destaxis,
;in destination resolution
WORD W1D_srcAxis ;axis to wipe from, =center of wiped rectangle
ibased on a 10000 unit wide rectangle
i0=use left edge of rect, 9999 use right, 5000 use center
;destination cropping, defines useful underscan area
WORD W1D_destMin ;minimum address to ever use in destination
WORD W1D_destMax ;maximum address to ever use in destination
WORD W1D_destAxis ;display coordinate origin.

WORD W1D_effectSize ;width or height of effect, in dest resolution

WORD W1D_effectColor ;1=> set effect, clear BG
WORD W1D_overscanColor icolor of overscan area, -1=skip os

;jthe wipe routine will determine the remaining elements in this structure.
WORD WI1D_rectMin ;minimum/maximum destination addresses that
WORD W1D_rectMax ;have an effect element, on or off screen.

WORD W1D_effectMin imin/max on screen destination address that
WORD W1D_effectMax ;has a scaled effect.
;=-1 if no scaled effect on screen.
LABEL W1D_SIZEOF ;size of this structure

*********************************t*****************

STRUCTURE EffectsLUT, 0
APTR ELUT_variables
APTR ELUT_equations

LABEL ELUT_SIZEOF

********************************i******************

* Toaster Register Time Variables, dynamic w/o matt
STRUCTURE ToasterELH1, 0
WORD TELH1_CD jcontrol da
WORD TELH1_LKA ; lumkey A
WORD TELH1_LKB ; lumkey B
LABEL TELH1_SIZEQOF

* Toaster Register Time Variables, non-dynamic w/o matt
* Other static bits could go in here, but remember to change NUMTV_TELH2
STRUCTURE ToasterELH2, 0
WORD TELH2_AM
WORD TELH2_BM
WORD TELH2_IS
WORD TELH2_PV
WORD TELH2_LK
WORD TELH2_CDS
LABEL TELH2_SIZEOF

* Toaster Register Time Variables, matt & (autocal?)
STRUCTURE ToasterELH3, 0

WORD TELH3_MA ;matt reg A

WORD TELH3_MB ;matt reg B

WORD TELH3_MP ;matt phase
LABEL TELH3_SIZEOF

gk e W e e W b o e R ok e e e ek i W e T ke e e b i e o o e

* used by 4.0 ANIM/ILBM Effects
STRUCTURE FaderData, 0
UWORD FDRD_CD ;0-255
LABEL FDRD_SIZEOF

STRUCTURE LumKeyData, 0
UWORD LKAD_LKA ;0-255
LABEL LKAD_SIZEOF

STRUCTURE TBarTimeData, 0
UWORD TBTD_Time ;O-SEfff
LABEL TBTD_SIZEOF

STRUCTURE BMpositionData, 0
WORD BMPD_Xaxis ;source, lines up with Destination X axis when deltaX

WORD BMPD_Yaxis ;source, lines up with Destination Y axis when deltaY =

WORD BMPD_deltaX
WORD BMPD_deltaY
LABEL BMPD_SIZEOF

AR RS A SRS SR E SRRt RS s R R R ER SR RS

* This structure is always at the start of all crouton DVE data
STRUCTURE DVEEffects, 0
APTR DVEE_TimeVars
¥ APTR DVEE_EntrySetUp ;entry toaster register config.
i APTR DVEE_ExitSetUp ;toaster register config on exit
LONG DVEE_Modesl
WORD DVEE_NumHor
LABEL DVEE_SIZEOF

* DVEE_Modesl

DEB_SHOWFACE SET 0 ;leave interface up while doing effect
DEB_DRAGTBAR SET 1 ;show tbar dragging

DEB_REVERSE SET 2 ;reverse the direction of the effect

DEB_MIDFLOP SET 3 ;when TBar is halfway down, switch sources and reverse
DEB_DOELH1 SET 4 ;frames do SendELH2Toaster (w/o MATT/dynamic)
DEB_DOELH2 SET S ;frames do SendELH2Toaster (w/o MATT/non-dynamic)
DEB_DOELH3 SET 6 ;frames do SendELH2Toaster (MATT & autocal)
DEB_GEOQONINPUT SET 7 ;set if effects on writing, else on playback
DEB_STAMPWAIT SET 8 ;used with Writing effects, to hold TBar 8 fields
DEB_TILEX SET 9 ;duplicate geometry to fill buffer

DEB_TILEY SET 10

DEB_MOSAICX SET 11 ;mosaic will be applied after DVE is calculated
DEB_MOSAICY SET 12

DEF_SHOWFACE SET (1<<DEB_SHOWFACE)

DEF_DRAGTBAR SET (1<<DEB_DRAGTBAR)

DEF_REVERSE SET (1<<DEB_REVERSE)

DEF_MIDFLOP SET {1<<DEB_MIDFLOP)

DEF_DOELH1 SET (1<<DEB_DOELH1) ; w/o MATT, dynamic
DEF_DOELH2 SET (1<<DEB_DOELH2) ; w/o MATT, non-dynamic
DEF_DOELH3 SET (1<<DEB_DOELH3) ; MATT & AutoCal
DEF_GEOONINPUT SET {1<<DEB_GEOONINPUT)

DEF_STAMPWAIT SET (1<<DEB_STAMPWAIT)

DEF_TILEX SET (1<<DEB_TILEX)

DEF_TILEY SET (1<<DEB_TILEY)

DEF_MOSAICX SET (1<<DEB_MOSAICX)

DEF_MOSAICY SET (1<<DEB_MOSAICY)

LR R A RS A REERERRE SRRl RE Rt RER iR all SR

* This structure is always at the start of all crouton Wipe data
STRUCTURE WipeEffects, 0
APTR WPE_TimeVars
N APTR WPE_EntrySetUp ;entry toaster register config.
A APTR WPE_ExitSetUp ;toaster register config on exit

LONG WPE_Modesl
WORD WPE_NumHor
LABEL WPE_SIZEOF

* WPE_Modesl
WEB_SHOWFACE SET 0 ;leave interface up while doing effect
WEB_DRAGTBAR SET 1 ;show tbar dragging

WEB_REVERSE SET 2 ;reverse the direction of the effect
WEB_MIDFLOP SET 3 ;when TBar is halfway down, switch sources and reverse
WEB_DOELH1 SET 4 ;frames do SendELH2Toaster (w/o MATT/dynamic)
WEB_DOELH2 SET 5 jframes do SendELH2Toaster (w/ MATT/non-dymamic)
WEB_DOELH3 SET 6 ;frames do SendELH2Toaster (MATT & autocal)
WEB_CROSS SET 7 ito cross wipe

T o e i

WEF_SHOWFACE SET (1<<WEB_SHOWFACE)

WEF_DRAGTBAR SET (1<<WEB_DRAGTBAR)

WEF_REVERSE SET (1<<WEB_REVERSE)

WEF_MIDFLOP SET (1<<WEB_MIDFLOP)

WEF_DOELH1 SET (1<<WEB_DOELH1) i w/o MATT, dynamic
WEF_DOELH2 SET (1<<WEB_DOELH2) i w/o MATT, non-dynamic
WEF_DOELH3 SET (1<<WEB_DOELH3) i MATT & AutoCal

WEF_CROSS SET (1<<WEB_CROSS)

LAA AR AR R SRR SRR R EEEE R TR SR R R R R R R R R R R IR I

* This structure is always at the start of all crouton Switcher data
STRUCTURE SwitcherEffects, 0
APTR SWE_TimeVars
i APTR SWE_EntrySetUp ;entry toaster register config.
. APTR SWE_ExitSetUp ;jtoaster register config on exit
LONG SWE_Modesl
LABEL SWE_SIZEOF

* SWE_Modesl

SEB_SHOWFACE SET 0 ;leave interface up while doing effect
SEB_DRAGTBAR SET 1 ;show tbar dragging

SEB_REVERSE SET 2 ;reverse the direction of the effect

SEB_MIDFLOP SET 3 ;when TBar is halfway down, switch sources and reverse
SEB_DOELH1 SET 4 ;frames do SendELH2Toaster (w/o MATT/dynamic)
SEB_DOELH2 SET 5 j;frames do SendELH2Toaster (w/ MATT/non-dynamic)
SEB_DOELH3 SET 6 ;frames do SendELH2Toaster (MATT & autocal)

SEF_SHOWFACE SET (1<<SEB_SHOWFACE)

SEF_DRAGTBAR SET (1<<SEB_DRAGTBAR)

SEF_REVERSE SET (1<<SEB_REVERSE)

SEF_MIDFLOP SET (1<<SEB_MIDFLOP)

SEF_DOELH1 SET (1<<SEB_DOELH1) i w/o MATT, dynamic
SEF_DOELH2 SET (1<<SEB_DOELH2) i w/o MATT, non-dynamic
SEF_DOELH3 SET (1<<SEB_DOELH3) i MATT & AutoCal

LA AR SRS S S A LR LS EREEEEE SR R R R R R R R R R R g v

ENDC ;RECT_I

R R AR E R T AR P T AR T I T I TR ART TR AR Ak kb bR sk bk ek Ak d e A kb d kb T

croutons.i

Copyright (c)1992 NewTek, Inc.
confidental and Proprietary. All rights reserved.

* * * * *

* $Id: croutons.i,v 2.0 92/05/18 21:20:41 Hartford Exp $

o
* $Log: croutons.i,v $
*Revision 2.0 92/05/18 21:20:41 Hartford

¥*x* empty log message ***
*

(222 RS AR RS RS RRRS SRR SRR R R Rttt Rttt Al

IFND CROUTONS_I
CROUTONS_I SET 1

AR K KK AN A AN R AR AR A IR AR TN AT AN AT AT RN E IR IR AR AR TR rrh R rhd kA rrhrkkrddadhhkk

* Constants used by effects croutons.
*

* By SKell, NewTek Aug 1990

R T A AN I I AR AT IR AN AR T AARRT NN A AN T AR TR AAN AT RN A I I AT AR AT IA T I AAA R AR AN K

DIGOFFSET SET -3
DIGOFFSETDTW SET 1

ZERO SET 0 ;will always be 0

QUADSWIDE SET 184
PIXELSWIDE SET (QUADSWIDE<<2)

MAXLIMIT SET $7fffffff ;used by generation equations
IGNORE SET -1 ;used by overscanColor, etc.

HORSAFETY SET 0 ;3 quads SAFETY margine from TEK ??
VERTSAFETY SET 0 ;2 field lines margine from TEK ?°?

LA AR S STANDARD TDE PR TSRS ES RSS2 2 2222 A R R RSl AR SRR RSREERstnl el

Hmmm TDE HORIZONTAL SOURCE constants for non-trail TDE rectangle
* Use these if the rectangle has no border, includes zipper

SXMIN SET (5+HORSAFETY)

SXMAX SET (189-HORSAFETY)

SXAXTS SET ((SXMAX+SXMIN)>>1)

SXSIZE SET (SXMAX+1-SXMIN)

* Use these if the rectangle has a border

SXMINBORDER SET SXMIN ;no diff

SXMAXBORDER SET 182 ;borders don’'t extend all the way across (0-732}.
SXAXTSBORDER SET ((SXMAXBORDER+SXMINBORDER)>>1)

SXSIZEBORDER SET (SXMAXBORDER+1-SXMINBORDER)

* Use these if the rectangle has a zipper
SXMINZIPPER SET SXMIN ;no diff

SXMAXZIPPER SET 185 ;186-189.5 = ZIPPER
SXAXISZIPPER SET ((SXMAXZIPPER+SXMINZIPPER)>>1)
SXSIZEZIPPER SET (SXMAXZIPPER+1-SXMINZIPPER)

* Use these if the rectangle is in PAIR units
SXMINPAIR SET SXMIN

SXMAXPATIR SET SXMAX

SXAXISPATIR SET {(SXMAXPAIR+SXMINPAIR)>>1)
SXSIZEPAIR SET (SXMAXPAIR+1-SXMINPAIR)

* Use these if the rectangle is in PAIR units, with border
SXMINPAIRBORD SET SXMINBORDER

SXMAXPAIRBORD SET SXMAXBORDER

SXAXISPAIRBORD SET ((SXMAXPAIRBORD+SXMINPAIRBORD)>>1)
SXSIZEPAIRBORD SET (SXMAXPAIRBORD+1-SXMINPAIRBORD)

Fm TDE HORIZONTAL DESTINATION constants for non-trail TDE rectangle
* Use these if the rectangle has no border, includes zipper

DXMIN SET ZERO

DXMAX SET (QUADSWIDE-1)

DXAXTSMIN SET (SXMIN+DIGOFFSET) ;left most axis

DXAXIS SET (SXAXIS+DIGOFFSET) ;axis in center of display

DXAXISMAX SET (SXMAX+DIGOFFSET) ;right most axis
DXSIZE SET (DXMAX+1-DXMIN)
DXSHALF SET (DXSIZE>>1) ;one half the screen size

* Use these if the rectangle has a border
DXMINBORDER SET DXMIN ;no diff
DXMAXBORDER SET DXMAX ;no diff

DXAXISMINBORDER SET (SXMINBORDER+DIGOFFSET) ileft most axis
DXAXTISBORDER SET (SXAXISBORDER+DIGOFFSET) ;jaxis in center of display
DXAXISMAXBORDER SET (SXMAXBORDER+DIGOFFSET) ;right most axis
DXSIZEBORDER SET (DXMAXBORDER+1-DXMINBORDER)

DXSHALFBORDER SET (DXSIZEBORDER>>1) ;one half the screen size

* Use these if the rectangle has a zZipper
DXMINZIPPER SET DXMIN ;no diff
DXMAXZIPPER SET DXMAX ;no diff

DXAXISMINZIPPER SET (SXMINZIPPER+DIGOFFSET) ;left most axis
DXAXISZIPPER SET (SXAXISZIPPER+DIGOFFSET) ;axis in center of display
DXAXISMAXZIPPER SET (SXMAXZIPPER+DIGOFFSET) ;right most axis
DXSIZEZIPPER SET (DXMAXZIPPER+1-DXMINZIPPER)

DXSHALFZIPPER SET (DXSIZEZIPPER>>1) ;one half the screen size

* Use these if the rectangle is in PAIR units

DXMINPAIR SET ({(DXMIN*2)+3)&~3) ;jround up to nearest oct

DXMAXPAIR SET ((DXMAX*2)&~3) iround down to nearest oct
DXAXISMINPAIR SET ({SXMINPAIR+DIGOFFSET) *2) ;left most axis

DXAXISPAIR SET ((SXAXISPAIR+DIGOFFSET) *2) ;axis in center of display

DXAXTSMAXPAIR SET ((SXMAXPAIR+DIGOFFSET) *2) ;right most axis
DXSIZEPAIR SET (DXMAXPAIR+1-DXMINPAIR)
DXSHALFPAIR SET (DXSIZEPAIR>>1) ;jone half the screen size

* Use these if the rectangle is in PAIR units, with border

DXMINPAIRBORD SET ({((DXMINBORDER*2)+3)&~3) ;round up to nearest oct
DXMAXPAIRBORD SET ((DXMAXBORDER*2) &~3) ;round down to nearest oct
DXAXISMINPAIRBORD SET ((SXMINPATRBORD+DIGOFFSET) *2) ;left most axis
DXAXISPATIRBORD SET ((SXAXISPAIRBORD+DIGOFFSET) *2) ;axis in center of display
DXAXISMAXPAIRBORD SET ((SXMAXPAIRBORD+DIGOFFSET) *2) ;right most axis
DXSIZEPAIRBORD SET (DXMAXPAIRBORD+1-DXMINPAIRBORD)

DXSHALFPAIRBORD SET (DXSIZEPAIRBORD>>1) jone half the screen size

w —_— - [RapE—

* Good amounts to move TDE rectangle on/off screen. 12*16 = 6*32 = 3%*64 = 192
DXMOVE SET 192

DXMHALF SET (DXMOVE>>1) ;jone half the screen size
DXMOVEBORDER SET DXMOVE ;no diff

DXMHALFBORDER SET (DXMOVEBORDER>>1) ;one half the screen size
DXMOVEZIPPER SET DXMOVE ;no diff

DXMHALFZIPPER SET (DXMOVEZIPPER>>1) ;one half the screen size

DXMOVEPALIR SET (DXMOVE*2)

DXMHALFPAIR SET (DXMOVEPAIR>>1) ;one half the screen size
DXMOVEPAIRBORD SET DXMOVEPAIR ;no diff

DXMHALFPAIRBORD SET (DXMOVEPAIRBORD>>1) ;one half the screen size

Ko m TDE VERTICAL SOURCE constants for non-trail TDE rectangle
SYMIN SET (2+VERTSAFETY) ;jcould useually be 1+

SYMAX SET (238-VERTSAFETY) ;technically should be 239 111
SYAXTIS SET ((SYMAX+SYMIN)>>1)

SYSIZE SET (SYMAX+1-SYMIN)

e —— TDE VERTICAL DESTINATION constants non-trail TDE rectangle
DYMIN SET 1 ;javoid 1/2 scan line at top

DYMAX SET 240 ;will only use 240 on field II

DYAXTISMIN SET SYMIN

DYAXTS SET SYAXIS

DYAXTISMAX SET SYMAX

DYSIZE SET (DYMAX+1-DYMIN)

DYSHALF SET (DYSIZE>>1)

* Good amounts to move TDE rectangle on/off screen. 16*16 = 8*32 = 4*64 = 256
DYMOVE SET 256
DYMHALF SET (DYMOVE>>1)

wwkkw DNTGITAL TRAILS ON WRITE TDE LE R S SRR R R R R R b T e

* The source MIN/MAX actually define the limits where the video can be
recorded, which is assumed to be the same as the coordinates as for a
standard TDE source.

The destination MIN/MAX, as always, are related to the Amiga screen.
For Trails On Writing, you typically want to use the full screen.

*

* o+ * o

¥ TDE HORIZONTAL SOURCE constants for digital trail TDE rectangle
SXMINDTW SET (5+HORSAFETY)

SXMAXDTW SET (189-HORSAFETY)

SXAXTISDTW SET ({SXMAXDTW+SXMINDTW)>>1)

SXSIZEDTW SET (SXMAXDTW+1-SXMINDTW)

N _ == TDE HORIZONTAL DESTINATION constants for digital trail TDE rectangle
DXMINDTW SET ZERO
DXMAXDTW SET (QUADSWIDE-1)

DXAXTISMINDTW SET (SXMINDTW+DIGOFFSETDTW) ;left most axis

DXAXISDTW SET (SXAXISDTW+DIGOFFSETDTW) ;axis in center of display

DXAXISMAXDTW SET (SXMAXDTW+DIGOFFSETDTW) ;right most axis

DXSIZEDTW SET (DXMAXDTW+1-DXMINDTW)

DXSHALFDTW SET (DXSIZEDTW>>1) ;one half the screen size

Hm=—— TDE HORIZONTAL SOURCE constants for digital trail TDE rectangle, with zipper

SXMINDTWZIPPER SET (S5+HORSAFETY)
SXMAXDTWZIPPER SET (189-HORSAFETY)
SXAXISDTWZIPPER SET ((SXMAXDTW+SXMINDTW)>>1)
SXSIZEDTWZIPPER SET (SXMAXDTW+1-SXMINDTW)

e TDE HORIZONTAL DESTINATION constants for digital trail TDE rectangle with zipper
DXMINDTWZIPPER SET ZERO

DXMAXDTWZIPPER SET (QUADSWIDE-1)

DXAXISMINDTWZIPPER SET (SXMINDTWZIPPER+DIGOFFSETDTW) ;left most axis
DXAXISDTWZIPPER SET (SXAXISDTWZIPPER+DIGOFFSETDTW) ;axis in center of display
DXAXTSMAXDTWZIPPER SET (SXMAXDTWZIPPER+DIGOFFSETDTW) ;right most axis
DXSIZEDTWZIPPER SET (DXMAXDTWZIPPER+1-DXMINDTW)

DXSHALFDTWZIPPER SET (DXSIZEDTWZIPPER>>1) ;one half the screen size

* Good amounts to move TDE rectangle on/off screen. 12*%16 = 6*32 = 3%64 = 192
DXMOVEDTW SET 192

DXMHALFDTW SET (DXMOVEDTW>>1) ;one half the screen size

T i i A S A S s - =Yy —— - S S . 2
e ——— TDE VERTICAL SOURCE constants for digital trail TDE rectangle
SYMINDTW SET (2+VERTSAFETY) ;could usually be 1+

SYMAXDTW SET (238-VERTSAFETY) ;technically should be 239 !!!
SYAXISDTW SET ((SYMAXDTW+SYMINDTW)>>1)
SYSIZEDTW SET (SYMAXDTW+1-SYMINDTW)

o TDE VERTICAL DESTINATION constants non-trail TDE rectangle
DYMINDTW SET 1 ;avoid 1/2 scan line at top
DYMAXDTW SET 240 ;will only use 240 on field II

DYAXISMINDTW SET SYMINDTW
DYAXISDTW SET SYAXISDTW
DYAXISMAXDTW SET SYMAXDTW
DYSIZEDTW SET (DYMAXDTW+1-DYMINDTW)
DYSHALFDTW SET (DYSIZEDTW>>1)

* Good amounts to move TDE rectangle on/off screen. 16*16 = 8%32 = 4*64 = 256
DYMOVEDTW SET 256
DYMHALFDTW SET (DYMOVEDTW>>1)

Wk KA WIPES B e T 2 222222222 22N R SRR 2 SRR Rttt h bl bt

H oo SOURCE constants for WIPE rectangle

* W1D_srcAxis

WSTART SET ZERO

WEND SET (Sffff)

WCENT SET ($7fff)

Fmm e HORIZONTAL DESTINATION constants for WIPE rectangle
* W1D_position, W1D_destMin/Max/Axis/effectSize
WXMIN SET ZERO

WXMAX SET (PIXELSWIDE-1)

WXAXIS SET ((WXMAX+WXMIN)>>1)

WXSIZE SET {(WXMAX+1-WXMIN)

WXSHALF SET (WXSIZE>>1)

* Good amounts to move WIPE rectangle on/off screen. 48%16=24*32=12%64 = 768
WXMOVE SET 768
WXMHALF SET (WXMOVE>>1)

R VERTICAL DESTINATION constants for WIPE rectangle
WYMIN SET ZERO
WYMAX SET 480

WYRAXIS SET ((WYMAX+WYMIN)>>1)
WYSIZE SET (WYMAX+1-WYMIN)
WYSHALF SET (WYSIZE>>1)

* Good amounts to move WIPE rectangle on/off screen. 32%16=16*32=8%64 = 512
WYMOVE SET 512
WYMHALF SET (WYMOVE>>1)

* W1D_effectColor
KEYLOW SET 0
KEYHI SET 1

****************t****************************tt******************

BGKEYQUAF SET 256 juse Black, White or QUAF
BGCOLORX SET 255 ;i QUAF
BGCOLORY SET 238 ;Line that contains a QUAF quad

BORDER SET 252 ;border color Y, also use current border X
WHITE SET 238 ;white quad ?°??

ENDC ;CROUTONS_I

CG 4.0 ARexx Documentation

Tentative ToasterCG ARexx Commands - October 18, 1994
by Arnie Cachelin

NOTE: These commands are subject to change, they may not all be fully implemented or bug free,

and there will certainly be more forthcoming. If there are bugs, or missing commands please let me
(Arnie) know ASAP.

GET_xxxx Commands

GET _CHAR() -- Returns current character as a single letter string.
GET_CHAR(SPOT) - Returns current char position
GET_CHAR(FACE) -- Returns current char’s font name ***
GET _CHAR(SIZE) -- Retumns char’s width (dx)
GET_CHAR(FIRST) -- Retumns first char on current line
GET _CHAR(LAST) -- Returns last char on current line
GET_CHAR(NEXT) -- Returns next char on current line
GET_CHAR(PREV) -- Returns previous char on current line
GET_CHAR(RGBA) -- Returns current char’s (top) color
GET_CHAR(TOPR) - Returns current char’s (top) color
GET _CHAR(BOTR) -- Retumns current char’s bottom color

GET_BORD(SIZE)
GET_BORD(RGBA)
GET_BORD(PRIO)

GET_SHAD(TYPE)
GET_SHAD(PRIO)
GET_SHAD(SIZE)

// GET_SHAD(TOPR)
GET SHAD(RGBA)
/IGET SHAD(BOTR)

GET _FONT() -- Returns current char’s font name

GET _FONT(TYPE)

GET _FONT(SIZE)

GET_FONT(name,[size]) -- Returns an available size of font named,

GET_RECT(SPOT)
GET_RECT(SIZE)
GET_RECT(PRIO)
GET_RECT(TOPR)
GET_RECT(RGBA)
GET_RECT(BOTR)

GET_PAGE() // return number
GET PAGE(FIRST)

GET_PAGE(LAST)

GET_PAGE(NEXT)

GET PAGE(PREYV)

GET PAGE(TYPE)

GET_PAGE(SIZE)

GET PAGE(BACK)

GET _LINE()

GET_LINE(FIRST)
GET_LINE(LAST)
GET_LINE(NEXT)
GET_LINE(PREV)
GET_LINE(TYPE)
GET_LINE(SIZE)

GET_LINE(JUST)

GET_LINE(SPOT)

SET _xxxx Commands

SET _line, char, page, etc sets current object then PICK selects that object, or selects relative to that
object (i.e. SET line number, PICK a char in that line). SET in the case of pages or attributes
actually changes the page# or changes attrs of the selected object(s)

(change character values with Make/Kill char)
SET _CHAR(FACE,name)
SET_CHAR(TOPR 1,g,b,a)
SET_CHAR(BOTR r,g,b,a)
SET_CHAR(RGBA 1,g,b,a)

SET BORD(SIZE,#)
SET BORD(RGBA ,g,b,a)
SET_BORD(PRIO,T|B)

SET SHAD(TYPE,D|C)
SET_SHAD(PRIO,T|B)
SET_SHAD(SIZE #)
SET_SHAD(RGBA 1,g,b,2)

SET_RECT(SPOT,x,y)
SET_RECT(SIZE,x,y)
SET_RECT(PRIO,T|B)
SET_RECT(RGBA,1,g,b,a)

SET PAGE(#)

SET_PAGE(FIRST)
SET_PAGE(LAST)
SET_PAGE(NEXT)
SET_PAGE(PREV)
SET _PAGE(TYPE)
SET_PAGE(BACK)

SET LINE(#)
SET_LINE(FIRST)
SET_LINE(LAST)
SET_LINE(NEXT)
SET_LINE(PREV)
SET_LINE(TYPE)
SET_LINE(JUST,L|R|C|N)
SET_LINE(SPOT)

PICK xxxx Commands

PICKPAGE([#]) /1 selects whole current page (jumps to it if # supplied)
PICKLINE([#]) // selects whole current line (sets new current if # supplied)
PICKCHAR([NOT]) Il Pick current char, deselect if arg provided

LOAD_xxxx Commands

<<LOADPAGE(name)>>
LOADBOOK(name)
LOADBRUSH(name)
LOADFONT(name)
LOADTEXT(name)
LOADPICT(name)

SAVE_ xxxx Commands

<<SAVEPAGE(name)>>
SAVEBOOK((name)
SAVETEXT(name)

MAKE xxxx Commands

MAKECHAR(letter)
MAKELINE(text)
MAKERECT(x,y,w,h)
MAKEPAGE([#])
MAKEBOOK((name)

KILL xxxx Commands

KILLCHAR([#])

KILLLINE([#])

KILLPAGE([#])

{ KILLBOOK() // maybe you should just delete a file!

Miscellaneous and Requester (REQ_xxxx) Commands

EXIT() // Translates all pages into Farsi and pig-latinizes them before CG exits
RENDER([M | P]) // Main or Preview

REQ FILE(title,[dir,[name]])
REQ DIR(title,[dir])

REQ STRING(title,[default])
REQ NUMBER(title,[default])
REQ ASK(title,[title2,[title3]])
REQ TELL(title,[title2,[title3]])

REXX(macro) _ !
MACRO(#,[macro]) /1 sets macro # to given string, or returns macro if none supplied

3

CG Book Format Documentation

I managed to dig this source out of the CG, it has a little comment about the book format, then 3
functions for reading lines in books created by different CG versions. The problem, in short, seems
to be the fact that there may be an attribute structure appended (which is defined below) to each
character’s TextInfo structure.

/*
Book format on disk

"ToasterBookFile4"

"FONT"

UWORD ID,StrLen,Height
"BRSH"

UWORD ID,StrLen

I'DRAW"

UWORD ID,StrLen, Height,struct Draw
"PAGE"

UWORD Number

"Lm’E"

UWORD NumberText

UWORD Ascii

BYTE Keming

UBYTE Attr?

struct Attributes

struct CGLine(from TotalHeight on)
"END! [1]

&

#define BK HEAD SIZE 16
#define OLD_BOOK_VERSION 1’
#define BOOK_VERSION B
#define NEW_BOOK_VERSION °4’
#define TYPE SIZE 4

// make sure valid with book.h!
#define PAGE_SIZE 12

char BookHead[] = "ToasterBookFile";
BOOL __ regargs ReadNewLine(

struct CGLine *Line,
struct LockBuffer *LB,
{ UWORD NumChars)
ULONG A;
UBYTE *Buff;
struct TextInfo *Text;

Buff = (UBYTE *)RD->ByteStrip->Planes|[0];

Text = &Line->Text[0];

if (!NumChars) { // should never happen

} if (!(Text->Attr = AllocAttrib(&RD->DefaultAttr))) return(FALSE);
else

A4

/l read TextInfos
for (A =0; A < NumChars; A++) {

if (4 != BufferedRead(Buff,4,LB)) return(FALSE);

Text->Ascii = *(UWORD *)&Buff[0];

Text->Kerning = Buff[2];

if (Buff[3]) {
if (1(Text->Attr = AllocAttrib(NULL))) return(FALSE);
if (sizeof(struct Attributes) != BufferedRead(Text->Attr,

} sizeof(struct Attributes),L.B)) return(FALSE);

Text++;

/l read CGLine
if (LINE_ATTR_SIZE != BufferedRead(&Line->TotalHeight, LINE ATTR_SIZE,LB))
return(FALSE);

return(TRUE);

//***

BOOL __regargs ReadNotSoNewLine(

struct CGLine *Line,
struct LockBuffer *LB,
{ UWORD NumChars)
ULONG A;
UBYTE *Buff;
struct TextInfo *Text;
struct Attributes3 *tmpattr;
Buff = (UBYTE *)RD->ByteStrip->Planes[0];
Text = &Line->Text[0];
if (\NumChars) { // should never happen
| if (!(Text->Attr = AllocAttrib(&RD->DefaultAttr))) return(FALSE);
else
/l read TextInfos

for (A =0; A < NumChars; A++) {
if (4 != BufferedRead(Buff,4,L.B)) return(FALSE);
Text->Ascii = *(UWORD *)&Buff[0];
Text->Kerning = Bufff2];
if (Buff[3]) {
if (!(tmpattr = (struct Attributes3 *)AllocAttrib(NULL))) return(FALSE);
if (sizeof(struct Attributes3) != BufferedRead(tmpattr,sizeof(struct Attributes3),1.B))

FreeAttrib((struct Attributes *)tmpattr);
return(FALSE);

if (1(Text->Attr = AllocOldAttrib(tmpattr)))

FreeAttrib((struct Attributes *)tmpattr);
return(FALSE);

FreeAttrib((struct Attributes *)tmpattr);

}

Text++;

}
5

// read CGLine
if (LINE_ATTR_SIZE != BufferedRead(&Line->TotalHeight, LINE ATTR_SIZE,LB))
return(FALSE);

retum(TRUE);

//***

BOOL _ regargs ReadOldLine(
struct CGLine *Line,
struct LockBuffer *LB,
UWORD NumChars,
struct CGPage *Page)

struct CGLine2 *QOldLine;
UWORD A;

struct TextInfo2 *TI2;
UBYTE *Buff;
struct TextInfo *Text;
struct Attributes *Attr;

Buff = (UBYTE *)RD->ByteStrip->Planes[0];
OldLine = (struct CGLine2 *)Buff;

/ read TextInfos
TI2 = (struct TextInfo2 *)Buff;
Text = &Line->Text[0];
for (A =0; A < NumChars; A++) {
if (sizeof(struct TextInfo2) != BufferedRead(Buff,
sizeof(struct TextInfo2),L.B))
return(FALSE);
Text->Ascii = TI2->Ascii;
Text->Kerning = TI2->Kerming;
Text++;

j

// read CGLine

if (LINE2 ATTR_SIZE != BufferedRead(&OldLine->FaceColor, LINE2_ATTR_SIZE,LB))
return(FALSE);

Line->TotalHeight = OldLine->TotalHeight;

Line->Baseline = OldLine->Baseline;

Line->XOffset = OldLine->XOffset;

Line->YOffset = OldLine->YOffset;

Line->Type = LINE_TEXT;

Line->JustifyMode = 01dL1ne->Just1fyMode

if (A = OldLine->Seperator) {
Line->Type = LINE_BOX;
Line->FaceWidth = SepW1dth[A 1];
Line->FaceHeight = SepHeight[A-1];
Line->Text[0].Ascii = 32; // one char faked for attr

I/ read Text->[0]. Attr
if ((Page->Type != PAGE_CRAWL) | | (NodesThisList(&Page->LineList) < 2)) {
if (!(Attr = AllocAttrib(NULL))) return(FALSE);
Line->Text[0].Attr = Attr;
ConvertOldColor(&0ldLine->FaceColor,&Attr->FaceColor);
ConvertOldColor(&OldLine->ShadowColor,&Attr->ShadowColor);
ConvertOldColor(&OldLine->OutlineColor,& Attr->OutlineColor);
if (OldLine->RenderFont != 65535)
Attr->ID = (OldLine->RenderFont >> 2);
else
Attr->ID = 0;
if (OldLine->Seperator)
Attr->ID =ID_BOX;
Attr->ShadowLength = OldLine->ShadowLength;
Attr->ShadowType = OldLine->ShadowType;
if (OldLine->ShadowType > SHADOW_CAST) {
Attr->ShadowType = OldLine->ShadowType - 2;
Attr->ShadowColor.Alpha = OLD_TRANSP_ALPHA;

3
Attr->OutlineType = (OldLine->OutlineType >> 3); // convert to 0,1...

/I somehow shadow direction meaning got switched
Attr->ShadowDirection = OldLine->ShadowDirection + 4;
if (Attr->ShadowDirection > 7) Attr->ShadowDirection -= 8;

Attr->ShadowPriority = OldLine->ShadowPriority;
Attr->SpecialFill=FILL_OLD;
Attr->GradColor=Attr->FaceColor;
Attr->OGradColor=Attr->OutlineColor;

3
return(TRUE);

/1] cut out from book.h...

struct TextInfo {
UWORD Ascii;
BYTE Keming;
UBYTE Select;
struct Attributes *Attr;

|5

/] Text[0]->Attr always has one of these to start line off
struct Attributes §
struct TrueColor FaceColor; // all colors treated as 1 attribute
struct TrueColor ShadowColor;
struct TrueColor OutlineColor;
struct TrueColor GradColor;
struct TrueColor OGradColor;

UWORD ID;

UWORD ShadowLength;
UBYTE ShadowType;
UBYTE OutlineType;
UBYTE ShadowDirection;
UBYTE ShadowPriority;
ULONG SpecialFill;

struct Attributes3 {

struct TrueColor
struct TrueColor
struct TrueColor
UWORD
UWORD
UBYTE
UBYTE
UBYTE
UBYTE

i

struct CGLine {

struct MinNode
struct Templnfo
struct TextInfo
UWORD
UWORD
UWORD
UWORD
UWORD
UWORD

UWORD

UBYTE
UBYTE
UBYTE
UBYTE

|5

FaceColor;
ShadowColor;
OutlineColor;

ID;
ShadowLength;
ShadowType;
OutlineType;
ShadowDirection;
ShadowPriority;

Node;
Temp[LINE LENGTH+1];
Text[LINE LENGTH+1];

TotalHeight; // height of tallest char

Baseline; /I baseline of tallest font in line

XOffset;

YOffset;

FaceMinY; I offset from top of render area to top of fonts
FaceWidth;

/] for LINE_BOX,LINE_BRUSH,LINE_DRAW only

FaceHeight;

/l for LINE_BOX,LINE_BRUSH,LINE_DRAW only

Type; // IDs must match this Type for whole line
JustifyMode;

RenderPri; /10 is default & lowest, each Type different
Rendered; I/ only used during PageCall() TRUE/FALSE

#define LINE_ATTR_SIZE (sizeof(struct CGLine) - sizeof(struct MinNode) \
- (sizeof(struct TemplInfo)*(LINE_ LENGTH+1)) \
- (sizeof(struct TextInfo)*(LINE_ LENGTH+1)))

NewTek Video Toaster CG - Front-End Processor Specification
Feb 9 1994
Prepared by Amie Cachelin

The front-end processor (FEP) specification provided below will allow markets with languages
requiring special keyboard input processing to use the Toaster CG through a customized FEP. The
CG and the FEP communicate using standard Amiga message ports and ARexx messages. The set of
commands required for FEP-CG interaction is limited although the FEP task may also send any other
ARexx command supported by the CG. This minimum command set can be divided into 2 sets of
commands, those sent by the CG to the FEP, and those sent by the FEP to the CG. Here they are:

Messages sent to FEP by CG

FEP Begin

“This message is sent when the user presses the hotkey in the CG if the FEP is available. The CG
will close its interface window and supply the screen address in the message’s argument
(rm_Args[1]). The FEP should open its own interface window on the CG screen, return a "1" if this
is successful, and start processing input.

FEP_Edit

“This message is sent to the FEP if the hotkey is pressed and text is already selected. The
command should be treated just like FEP_Begin, except that the current line 1s in the second
argument (rm_Args[2]). The text is stored as a series of 2-byte codes separated by single null bytes.
The length of this series is in the RexxArg structure. The screen address 1s still in rm_Args[1]. When
the CG issues this command, the current line is left intact (with the cursor on the first letter). If the
user aborts the FEP edit, the line will be unchanged, however if changes are made, the existing line
will have to be altered or removed using other CG ARexx commands. Options for altering lines
include KILLing the whole line, all the char.s one by one, moving to the altered character and setting
its value, etc. If you have no reason to support the editing of existing text (e.g. Kanji), just ignore the
extra data, and treat this command like FEP Begin.

FEP_IntuiMsg

While the FEP is active any intuition messages sent to the CG are redirected to the FEP with the
FEP_IntuiMsg message. This message contains any stray clicks or keypresses that the user makes on
the CG screen itself. The address of a copy of the IntuiMessage structure received by the CG is in
rm_Args[1]. The FEP should reply only to the ARexx message, not the IntuiMessage itself. One
good response to a message like this is to make the FEP window active again, so keystrokes stop
going to the CG window.

FEP_ VerifyFont

This message is sent by the CG when loading a font. It allows the FEP to handle any market-
specific font copy protection requirements. CG sends the name of the font file in rm_Args| 1], and
expects the FEP to return a 1 if the font is valid, or is unknown, or a 0 if the font is recognized but not
legally installed. If CG gets a 0, the load will fail. A possible scenario for the implementation of this
protection is as follows: User buys a font disk with an installer program. The installer program
copies the font to the user’s machine, and makes a change to the FEP itself to indicate that the newly
installed font is valid. The FEP should already have a list of possible protected fonts, and the font
installer will add a code to the relevant list entry showing that that font can be legally loaded.

Messages sent by FEP to CG

FEP End

“This message tells the CG that the FEP has closed its interface and the CG should resume
normal operation. The CG will not end any messages to the FEP after this command is received until
the next hotkey press.

o

FEP_NewChar
This message is sent by the FEP when the user has confirmed a character choice. The argument
should contain the appropriate 2-byte code.

FEP_ILoadFont

This message can be sent to the CG to load a composite postscript font. If a filename and size
are provided this font will be loaded at the given size, otherwise the file requester pops up. The
supplied font name should be the complete path and name of one of the type 1 fonts (i.e.
ToasterFonts/Mincho/MinchoA3). The CG will then load ALL the fonts from that font set. By
default, the composite fonts are assumed to have 2 Hex digits appended to the main font name. The
Hangul type 1 fonts apparently use 3 Decimal digits (i.e. Kim/Kim0Q11). This can be handled using
the Type parameter. The bits of this number determine whether the font is a composite font (bit 0),
and whether it uses 2 hex or 3 dec digits (bit 1):

PS Normal =0
PS_Composite =1
PS Hex =2
PS Dec =0

FEP_LoadFont("Mincho/MinchoA3",40,PS_Composite+PS_Hex)
FEP_LoadFont("Kim/Kim(001",40,PS_Composite+PS_Dec)

General Interface Notes

The CG’s ARexx port name is "CG_AREXX’ and the FEP’s port is named *’FEP.PORT’. These
names are case sensitive. Since both CG and FEP use ARexx standard messages, it is simple to
create ARexx scripts which simulate the functions of these two programs. Such scripts are invaluable
debugging tools and they will be provided along with the FEP example code. The FEP should
already be running when the CG is launched.

10

ColorFonts for the Video Toaster Character Generator

revised and updated by Daniel Wolf
16 October 1995

ColorFonts are anti-aliased sixteen million color fonts. ColorFonts are capable of having
photorealistic imagery, using all sixteen millions colors at once, but they are typically quite large, and
(currently) the user is unable to modify them.

Creating ColorFonts

ColorFonts are sixteen million color ToasterFonts (not to be confused with Amiga ColorFonts).
ColorFonts are currently created by:

1. Saving an IFF brush for each character in the font
2. Writing a text file which contains the filenames of each brush
3. Processing the brushes with a CLI utility called "colortoast"

Colortoast reads the script all the brush file names and creates an anti-aliased ColorFont from the
individual brushes. Colortoast is not included with the Toaster because it may be difficult for many
Toaster users. It is available to Video Toaster developers only, directly from NewTek.

Here’s the procedure for creating your own Toaster ColorFonts, expanded from the brief list
described above.

1. Create a set of 89 IFF 24-bit images of up to 160x160 pixels with the names Pic033, Pic034,
...Pic120, Pic121 and save them all in one directory, CFPics: (an ’assigned’ directory). An ideal
tool for this step is LightWave3D (more about that later). If you create the images as ordinary
Amiga graphics (2-256 colors), you’ll want to process them into 24-bit images with Art
Department Professional or an equivalent tool.

2a. A pre-written text file of all your images, named CFInList, is part of this ColorFont-making
package and is installed in your s: directory. It looks like this:

CFPics:Pic033
CFPics:Pic034

CFPics:Pic120
CFPics:Pic121

This CFInList file list will come into play in Step 3.

2b. Another pre-written text file, CFOutList, is also supplied with this package. It comes into play in
the Step 3 also. CFOutList looks like this:

ram:CF/CFBrush.33
ram:CF/CFBrush.34

'ram:CF/CFBrush. 120
ram:CF/CFBrush.121

In CFOutList, the .33 means ASCII 33 (an exclamation point), .65 means ASCII 65 (an uppercase A),
etc. When the set of brushes created in the next step is processed into a font, the images you start
with will become the characters from ASCII 33 up to ASCII 121. If you start with images of
characters, you’ll get a ColorFont of characters. If you start with other kinds of images, then when
you use that ColorFont in the Toaster CG, you’ll get those images instead of characters!

3. Execute the MakeCFont80 script also supplied with this set of tools (and also installed into your s:
directory). MakeCFont is a two-line AmigaDos script which first calls an ARexx script caled
FontCutter.rexx (again, part of this package and also installed in your s: directory).

FontCutter.rexx uses a program called BrushCutter (included in this package also, and installed into
your c: directory) to cut out 24-bit brushes from your set of images. FontCutter.rexx reads in each
image name listed in CFInList, tells BrushCutter to process that image into a brush, and then saves
the brush according to the list of file names in CFOutList. BrushCutter intelligently cuts out brushes
of imagery from a black background. When the images are pictures of characters in a font character
set, BrushCutter’s intelligently cuts the brushes to appropriate sizes for use in a ColorFont.

All of the brushes created by FontCutter.rexx are placed into your ram: disk, in a directory called CF.
While it applies BrushCutter to each of your original 24-bit images, FontCutter.rexx also builds a
third temporary script, ram:CFScript. When FontCutter.rexx is finished turning your images into
brushes, MakeCFont80 calls ColorToast to process the set of brushes into a finished Toaster
ColorFont in your ram: disk, called CFont.80.

When MakeCFont80 is finished performing its two steps (FontCutter.rexx and ColorToast), you are
ready to copy your CFont.80 80-point ColorFont to a hard drive or floppy disk and use it with the
Toaster CG.

Voila!

If you wish to build the usual complement of 40-point, 60-point and 80-point versions of a single
ColorFont, you’ll want to:

1. Use MakeFont80 and 160x160 images for a 80-point ColorFont.

2. Use MakeFont60 and 120x120 images for a 60-point ColorFont.
3. Use MakeFont40 and 80x 80 images for a 40-point ColorFont.

Using LightWave to Create the Original Image Set
You'’ve also received two more tools for ColorFont creation via LightWave:

Color_Font.lwm aLightWave Modeler ARexx Macro

Color_Font.lws a LightWave Scene file
If you installed this package from the AFX_CF disk, the Color_Font.lwm macro is in your §:
directory (it is an ARexx script for Modeler) and Color_Font.lws is in your Work:CFontLWTools
directory (along with this Doc file).

Here’s a step-by-step description of one way (there are definitely more variations you can work out
for your own convenience) to use LightWave and these ColorFont tools.

2

A. Building a LightWave Object of a Character Set with the Color_Font.lwm Modeler Macro.

Start LightWave.

Enter Modeler.

Select the Text Gadget (lower left part of Modeler screen).

When the Generate Text panel opens, note that the Font popup says > (none) °.

Select the Load Gadget next to the Font popup.

Use the requesters to select a PostScript-type font to work with.

When you’ve brought in a font, make sure you use the Font popup to specify it and that the (none)

designation is gone.

Exit the Generate Text panel by clicking on its OK button.

. Go to the Amiga Workbench (Left-Amiga-M).

10. Start an Amiga Shell.

11. Type in: rx Color_Font.lwm .

12. The Macro will bring up a panel and you can observe that the font you specified is named in the
panel. The panel also shows that you’ll build an LightWave object using characters 33 to 121 of
the font. You can click on the Bevel button gadget if you want the LightWave object to have
beveled edges.

13. Click on the OK button on the Macro’s panel.

14. Now wait and observe the Color_Font.lwm Modeler Macro build a series of characters.

15. When the Macro is complete (in a few minutes, perhaps) you can observe its Done button and
click on it.

16. Now Click on Modeler’s Save As Gadget.

17. Use the file requesters to save the Light Wave Object which was just created by the

Color_Font.lwm Macro. For example, if you used CalgaryDemiBold as your font, you might

want to save the object you made as CalDemi in your Objects directory.

V0 NALAWN -

You've just created a large LightWave object with all the 89 characters of a ColorFont character set -
all laid out in a long line and spaced appropriately (on a 2 meter Grid) for use in the next step.

B. Rendering a Set of 89 Character Images to Process with MakeFont80 ColorFont-creating Script.

Go to LightWave’s Layout screen.

Click on the Scene Menu gadget at the top left of the screen.

When the Scene panel appears, click on the Load button gadget.

Load the scene named Color_Font.lws from your Work:CFontLWTools directory.

LightWave will alert you that it cannot find the Font.Iwo object and offer you an opportunity to

load an alternative object. Click on the OK button and load in the object you just created in Step

A. above (e.g. CalDemi.lwo).

When the scene is loaded in, exit the Scene panel.

. If you specify a Camera view and step through the frames of the LightWave scene you just loaded,
you’ll see that each frame will render an image of one of the characters of the character set used to
build the LightWave object when you invoked Color_Font.lwm!

8. Click on the Images button at the top of the Layout screen and you’ll enter the Images Panel.

Load in an image of your choice then exit the Images Panel.

9. Now comes the artistic part. Enter the Surfaces panel and you’ll find that all your object has the
Default surface. Click on the T next to the Surface Color option.

10. When the Surface Texture panel appears, specify a Planar Texture Map on the Z axis and set the
Texture Size to X=2, Y=2, and Z=1. Use the Image popup to specify the image you just loaded in
the Images Panel, then exit the Surfaces Panel.

11. Click on the Record button at the top of the Layout screen.

12. Select the option to Save RGB Images in the Record Panel. When the File Requester appears,

specify that you want to save to your CFPics: (assigned) directory, with a picture prefix of Pic.

Then exit the Record Panel.

=

o

3

13. Click on the Camera button at the top of the Layout screen.

14. Specify a Custom Size of 160x160 (even up to 240x160 will be OK here) and then exit the
Camera Panel.

15. Now Render the scene. LightWave will create a series of images of your Character Set with your
selected image 'texture-wrapped’ onto each letter.

16. When LightWave is finished with the rendering, you can use the set of 160x160 images you just
created to process into a ColorFont with the MakeCFont80 script described earlier.

There you have it. You can use the CFontLWTools to automate a large part of the work of building
your 160x160 images for conversion to a 80-point Toaster ColorFont with the tools described at the
beginning of this doc file.

Have fun!

For more information on developing software and hardware products for the Video Toaster, please
contact NewTek.

NewTek, Inc.

Developer Support Program
1200 S.W. Executive Drive
Topeka, KS 66615
913-228-8000

For your reference:

Partial ASCII Character Set

SP 32 @ 64 ¢ 96

1 33 A 65 a 97

" 34 B 66 b 98
35 C 67 c 99
$ 36 D 68 d 100
% 37 E 69 e 101
& 38 F 70 f 102
’ 39 G 71 g 103
(40 H 72 h 104
) 41 I 73 i 105
* 42 J 74 j 106
+ 43 K 75 k 107
, 44 L 76 1 108
- 45 M 77 m 109
. 46 N 78 n 110
/47 O 79 0 111
0 48 P 80 p 112
1 49 Q 81 q 113
2 50 R 82 r 114
3 51 S 83) 115
4 52 T 84 t 116
5 53 U 85 u 117
6 54 vV 86 v 118
7 55 w87 w 119
8 56 X 88 X 120
9 57 Y 89 y 121
;58 VA 90 zZ 122
;59 [91 { 123
< 60 \ 92 | 124
= 61] 93 } 125
> 62 & 94 ~ 126
?7 63 95

;Flyer-Toaster ES Message Programming Example

;by Daniel Wolf 7/4/95
sfor MACROG68 Assembler

;(c) Copyright 1995 by NewTek, Inc.

EXEOBIJ
RELAX
MC68000

NOCOMMENTMARKERS

JMP _START

;**************** Preliminaries

;*** Intuition Equates - needed for includes

CUSTOMSCREEN
ACTIVATE
DISKINSERTED
DISKREMOVED
MOUSEBUTTONS
INTUITICKS
NOCAREREFRESH
RAWKEY
GADGETDOWN
GADGETUP
RMBTRAP
SMART_REFRESH
BORDERLESS
BACKDROP
BOOLGADGET
GADGHNONE
GADGIMMEDIATE

;¥** Amiga Includes

EQU $F
EQU $1000
EQU $8000
EQU $10000
EQU $8
EQU $400000
EQU $20000
EQU $400
EQU $20
EQU $40
EQU $10000
EQU $0
EQU $800
EQU $100
EQU $1
EQU $3
EQU $2

INCLUDE "INCLUDES:EXEC.I"
INCLUDE "INCLUDES:GADGET.I"

;*** Toaster Includes

INCLUDE "INCLUDES:ELH.I"
INCLUDE "INCLUDES:VTHAND.I"
INCLUDE "INCLUDES:EDITSWIT.I"
INCLUDE "INCLUDES:INSTINCT.I"

;¥*% Private Structure for Local Variables

SOFFSET SET 0
LONG _STACK
LONG _DOSBASE

LONG _TOASTBASE

LONG COMMAND
LONG STDOUT
LONG PUBPORT
LONG FG
SOFFSET SET 0

;*¥** Amiga Exec and DOS Lib Offsets

LVO.CLOSELIBRARY

LVO.FINDTASK
LVO.OPENLIBRARY
LVO.WAITPORT
LVO.REMOVE
LVO.ADDPORT
LVO.PUTMSG
LVO.FREESIGNAL

EQU $FFFFFE62
EQU $FFFFFEDA
EQU $FFFFFDD8
EQU $FFFFFES0
EQU $FFFFFF04
EQU $FFFFFE9E
EQU $FFFFFE92
EQU $FFFFFEBO

;jump past includes, etc.

;types.i, ports.i, nodes.i, etc. in one
;Amiga Gadget basis for FastGadgets

:needed for INSTINCT.I

;needed for INSTINCT.I
;Editor-Switcher Message Definitions
;reference to TB_ARexxPort

;the FastGadget of the Crouton

LVO.ALLOCSIGNAL EQU $FFFFFEB6

LVO.OUTPUT EQU $FFFFFFC4
LVO.WRITE EQU $FFFFFFDO

;¥** Some Useful Macros

SYSLIB MACRO
move.l $4,a6

jsr LVO.\1(a6)
ENDM

DOSLIB MACRO

move.l _DOSBASE(a5),a6
jsr LVO.\1(a6)

ENDM

JUST MACRO
jsr LVOA1(a6)
ENDM

DOSPRINT MACRO
movem.l d0-d3/a0-a6,-(SP)
move.l\1,d1
move.l \2,d2
move.l d2,a0

CALC\@
tst.b (a0)+
bne.s CALC\@
move.l a0,d3
sub.1d2,d3
subq.] #1,d3
DOSLIB WRITE
movem.l (SP)+,d0-d3/a0-a6
ENDM

;**************** Program Code

_START
lea VARIABLES,a5
move.l SP,_STACK(a5)
move.l $4,a6
move.l a0, COMMAND(a5)
cmpi.l #4,d0
bmi _STARTERROR
clr.b -1(a0,d0. W)

lea _DOSNAME,al

moveq #34,d0

JUST OPENLIBRARY
move.l dO,_DOSBASE(a5)
beq _STARTERROR

lea _TOASTNAME,al

moveq #0,d0

JUST OPENLIBRARY
move.l d0,_TOASTBASE(a5)
beq _STARTERROR

DOSLIB OUTPUT
move.l d0,STDOUT(a5)

NOWDOMAIN
DOSPRINT STDOUT(a5) #TITLE
DOSPRINT STDOUT(a5),COMMAND(a5)
DOSPRINT STDOUT(aS) #TWOLINE
jst CROUTONIT

*filehandle (d1),*buff (d2), [len (d3)]

;put length of null-terminated
;string into d3 for DOS WRITE command

;Amiga Startup Stuff
;save stack pointer

;save ptr to the clip name!
;command at least 4 characters long!

;null-terminate the command line

;check for successful open

;set CLI window as OUTPUT file handle

;print out program title

;print out clip name from command line
;do 2 linefeeds and carriage returns

;do the Flyer routines

_ERROR

move.l dO,-(SP)

move.l $4,a6

move.l _TOASTBASE(a5),d0
beq.s 5%

move.l d0,al

Ig ST CLOSELIBRARY

5

move.l _DOSBASE(a5),d0
beq.s 9%

move.l d0,al

JUST CLOSELIBRARY
9%

move.l (SP)+,d0

move.l _STACK(a5),SP
s

_STARTERROR
moveq #$EFEFEff,dO
bra _ERROR

CROUTONIT

bst SETUPPORT
tst.1 dO

beq ERROR

lea MESSAGE,al

move.w #ES_LoadCrouton,ES_Type(al)
move.l COMMAND(a5),ES_Datal(al)
move.l #1,ES_Data2(al)

bsr SENDIT

move.l ES_Reply(al),FG(a5)

beq.s DONE

move.w #ES_Select,ES_Type(al)
move.l FG(a5),ES_Datal(al)
bsr SENDIT

move.w #ES_Auto,ES_Type(al)
move.l FG(a5),ES_Datal(al)
bsr SENDIT

move.w #ES_FreeCrouton,ES_Type(al)
move.w FG(a5),ES_Datal(al)
bsr SENDIT

DONE

tst.] PUBPORT(a5)

beq.s 1%

move.l PUBPORT(a5),al
SYSLIB REMOVE
move.l PUBPORT(a5),a0
moveq #0,d0

move.b MP_SIGBIT(a0),d0
JUST FREESIGNAL

1%

moveq #0,d0

ERROR

rts

;clean up and exit to AmigaDos

;restore stack pointer
:exit back to where we came from!

;didnt get our ESMSG port!

;load the crouton

;select this crouton

;:auto/execute the crouton

;and now free the crouton

;did we make a port?

; if so - remove it from list

; and free the ports SIGBIT

;all is well

SENDIT

move.w #EditCookie,ES_Cookie(al) ;abracadabra
move.l PUBPORT(a5),MN_REPLYPORT(al) ;reply to me!
move.b #NT_MESSAGE,LN_TYPE(al)

move.w #128 MN_LENGTH(al)

move.l _TOASTBASE(a5),a2

move.l TB_ARexxPort(a2),a0 ;port in a0

SYSLIB PUTMSG

0%

move.l PUBPORT(a5),a0

JUST WAITPORT

cmpi.l #MESSAGE,d0 ;18 it our message coming back?
bne.s 0% ;stupid wait loop

move.l d0,al

cmpi.b #NT_REPLYMSG,LN_TYPE(al) ;1s this a reply to our message?
bne.s 0%

rts

SETUPPORT

move #-1,d0 ;don’t care which sigbit this port gets
SYSLIB ALLOCSIGNAL ;get a sigbit

move.b d0,d7 ;stash sigbit

cmpi.b #-1,d0 ;if error -

beq ERR_PORT1 ; branch out from here

lea PORTMEM, a4

suba.l al,al

JUST FINDTASK ;find the task control block and
move.l dO,MP_SIGTASK (a4) ;tell port where the tcb is
move.l #PORTNAME,LN_NAME(a4) ; and its name

move.b #0,LN_PRI(a4) ; and its priority

move.b #NT_MSGPORT,LN_TYPE(a4) ; and its type

move.b #PA_SIGNAL,MP_FLAGS(a4) ; and its flags

move.b d7,MP_SIGBIT(a4) ; and which sigbit it got
PUBLICPORT ;anything but PUBLIC would be DUMB
move.l a4,al ;tell ADDPORT where the port is
JUST ADDPORT ;and ADD it

move.l a4,PUBPORT(a5) ;and tell this program where it is
move.l a4,d0 ;and return its address

s
ERR_PORTI1 ;if error, set d0 =0

moveq #0,d0 ;signal allocation failed

rts

;**************** Data Section

DATA

CNOP 0,4
_TOASTNAME dc.b *ToasterBase’,0
EVEN

_DOSNAME dc.b ’dos.library’,0
EVEN

PORTNAME dc.b ’ESTEST’,0
EVEN

TITLE DC.B 13,10, ESTest by D. Wolf 1995 by NewTek’
TWOLINE DC.B 10,13,10,13,0,0,0,0

CNOP 0,4
VARIABLES dx.120,0 ;private (STACK, COMMAND, CMDLEN, etc.)
MESSAGE dx.1 64,0 ;mem for our message
PORTMEM dx.120,0 ;mem for our message port
END

~J

sfe st s ke sk sk sfe e s sk sk o ok ok ok o sk o ke 8 3k o s s sk sk e sk ot e s e ok sk sk ok sk ke sk sk ke sk sk s sk ok sk ke st sk e st sk s sk ok sk sk sk skt skok sk skokok ok

* SEditSwit.i$

sk sk sk 34 s sk sk sk sfe ok ok sk sk ok ok sk sk sk ke sk st sfe ke sk sk st she ke ok ok sk sk ok ok ok ok sk sk st sk sk ok sk sk sk sk ke sk e sk sk skeskeske sk sk sk sk sk skok ok sk ok

IFND EDIT_SWIT_I

EDIT_SWIT_ISET 1

*

IFND EXEC_TYPES_I
INCLUDE "exec/types.i"
ENDC

INCLUDE "exec/ports.i"

FG_Extral

CR_Overlap equ O
CR_VidEvent equ 1
CR_Other equ 2

EditCookie equ $666

MAX_ESPARAMS equ 8

#

STRUCTURE ESMessage, MN_SIZE

WORD ES_Cookie :$666

WORD ES_Type

LONG ES_Reply ;Usually returns a useful number, pointer, or error number
APTR ES_Error ;->some type off Error structure

LONG ES_Datal

LONG ES_Data2

LONG ES_Data3

LONG ES_Data4

LONG ES_Data5

LONG ES_Data6

LONG ES_Data7

LONG ES_Data8 ;actually any number of LONGs is allowed
LABEL ES_SIZEOF ;so, look at MN_LENGTH for total length

STRUCTURE RenderCallBack,0

APTR RCB_Function

APTR RCB_FG

ULONG RCB_Frame

ULONG RCB_Min

ULONG RCB_Max

ULONG RCB_Flags ;bit 31 = initial FF/REW direction (1=reverse)
-bit 30 = clear if FF/REW, set if Shuttle

APTR RCB_Window

APTR RCB_Gadget

WORD RCB_MouseY ;initially same as sc_MouseY

WORD RCB_MouseX ;initially same as sc_MouseX

* Velocity = RCB_VelocityNumerator/RCB_VelocityDenominator

WORD RCB_VelocityNumerator
UWORD RCB_ VelocityDenominator

LABEL RCB_SIZEOF

BITDEF DHD,DHD_PLAY_REV,31 ; initial shuttle direction (1=reverse)
BITDEF DHD,DHD_SHUTTLE_MODE,30 : clear if FF/REW J og, set if Shuttle

BITDEF DHD,INPOINT,29 ; set if moving inpoint
BITDEF DHD,OUTPOINT,28 ; set if moving outpoint
BITDEF DHD,VIDEOSLIDER,27 ; set if moving video slider
BITDEF DHD,AUDIOSLIDER,26 ; set if moving audio slider
3
HACK_TWEAK EQU 'TWEK’ ;TWEK first hack type

HACK_TBCwrite EQU 'TBCW’
HACK_TBCread EQU 'TBCR’
HACK_TBCopen EQU "'TBCO’
HACK_TBCclose EQU 'TBCC’

STRUCTURE TweakHack,0
ULONG twhk_Flags
ULONG twhk_Position ;-910->910
ULONG twhk_Clock ;0->3
ULONG twhk_Coarse :0->15
ULONG twhk_Fine ;0->7
ULONG twhk_Luma Y
ULONG twhk_Hue :
ULONG twhk_Pedestal ;0->255
ULONG twhk_Shift ;0->1
LABELtwhk_SIZEOF
;twhk_Flags bits
HKB_PLAY_A EQU 0
HKB_PLAY_B EQU 1
HKB_RECORD_A EQU 2
HKB_RECORD_B EQU 3
HKB_TESTREC EQU 4
HKB_READCALIB EQU 5
HKF_PLAY_A EQU 1
HKF_PLAY_B EQU 2
HKF RECORD_A EQU 4
HKF_RECORD_B EQU 8
HKF_TESTREC EQU 16
HKF_READCALIB EQU 32
*
STRUCTURE SystemPrefs,0
UBYTE spref_Termination
UBYTE spref_GPI ;0=0ff, 1=positive, 2=negative
UBYTE spref_Flags1
UBYTE spref_Flags2
LABEL spref_SIZEOF
* Flags1 bits
BITDEF sp,PrvwOLay,0 ;set if Preview Overlay is on, else 3 monitor setup
BITDEF sp,FlyerVID3,1 ;set if Toaster VID3 is connected to Flyer, else it’s External
BITDEF sp,FlyerVID4,2 ;set if Toaster VID4 is connected to Flyer, else it’s External
BITDEF sp,FastDrive,3 ;set if extra fast drives are present, fast recording enabled

2

* Termination Setting:

BITDEF sp,Terminate4,0 ;set if Video 4 input is terminated
BITDEF sp,Terminate3,1 ;set if Video 3 input is terminated
BITDEF sp,Terminate2,2 ;set if Video 2 input is terminated
BITDEF sp,Terminatel,3 ;set if Video 1 input is terminated

*

* This will record the currently selected VideoSource & AudioSources, using
* the current compression mode. See ES_CompressionMode, ES_RecordSource

*+ NOTE!!! This struct is now part of the ES command structure (starting at Datal)
*+ STRUCTURE FlyerRecord,0

*+ APTR FLY_ Name ;->path/name
*+ ULONG FLY_Fields ;length of record, O=wait for abort
*4

+ The following functions are ignored if NULL.

+ They are used to start and stop record frame accurately.

+ So record start and stop could be controled by GPI, input SMPTE time,
+ Time of Day, Keyboard or Mouse input, etc.

+ Start and stop will take affect on start of the next color frame (field 1).
*+ ULONG FLY_StartFunction ;Will not start until StartFunct returns

*+ ULONG FLY_StopFunction ;Will not stop until Stop function returns
*+ ULONG FLY_Flags ;see below

*+ LABELFLY_SIZEOF

% FLY_Flags *

BITDEF FLY,APPEND,0 ;For appending to existing clips
BITDEF FLY,SERIALI,1 ;Include Serial port1 data
BITDEF FLY,SERIAL22 ;Include Serial port2 data

*
* Values used by ES_RecordSource(VideoSource,,,)

FLY_VideoSource_ NONE EQU 0O ;Show black, don’t record video
FLY_VideoSource NTSC EQU 1 ;Requires Flyer TBC
FLY_VideoSource_SVHS EQU 2 ;Requires Flyer TBC
FLY_VideoSource _VID1 EQU 3

FLY_VideoSource_VID2 EQU 4

FLY_VideoSource_Main EQU 5

FLY_VideoSource Preview EQU 6

FLY_VideoSource_VID3 EQU 7

FLY_VideoSource_VID4 EQU 8

*

* Values used by ES_CompressionMode
* 1 don’t know what modes we’ll support, so I just made up some names!!!

FLY_CompressionMode_D2 EQU 0
FLY_CompressionMode_BetaCam EQU 1
FLY_CompressionMode_SVHS EQU 2
FLY_CompressionMode_VHS EQU 3
FLY_CompressionMode_BroadCast EQU 4
FLY_CompressionMode_Industrial EQU S
FLY_CompressionMode_ThreeQuarter EQU 6
FLY_CompressionMode_High8 EQU 7

FLY_CompressionMode_PreviewQuality EQU 8

3

*

* Flags used by ES_LocateFile & ES_FoundFile
;set if you want a string gadget (for save)

StringGadget equ 1

s o sk o she ke e ok sk sk st sk sk she ok e sk ofe sk sk s sk sk sfe sk ok ske sk sk ok sk ok Sk ok e she ke s e e sk sfe sk sk sk sk sk sk sk sk ok sk ok ke sk sk sk s sk skoskskok sk sk
* See edit/inc/editswit.h for more comments. Or switcher/src/pecomm.a

* ESMessage.Type
ES_DUMMY
ES_STARTUP

ES_RENDER_EDIT

ES_RENDER_SWIT

ES_ClearProject
ES_PanelOpen

ES_GETPLIST

equ
equ

equ

equ

equ
equ

equ

N Uk W

;Datal->TB_Screen, Data2=NULL,
;Data3->TB_Window, ;Data4->table of pointers to FG
;lists

; tells Editor to (re)render its windows

; Datal: TRUE means open windows if not open (and
;refresh)

; FALSE means close windows (no refresh before
;close)

; (WINDOWOPENFLAG, ScreenDepth) ;ONLY
;SENT TO EDITOR, NEVER TO SWITCHER!

; tells Switcher to (re)render, Datal: same
;ES_RENDER_EDIT

; Clear a given project list

; Called when control panel is opened. USED TO BE
:SETRMOFF

; asks switcher for project list pointers, reply will be
;pointer to table of pointers to FG lists

; This info is also supplied by the ES_STARTUP message!!!

ES_FreeCrouton
ES_LoadCrouton

ES_DuplicateCrouton

ES_lLoadProject
ES_SaveProject
ES_NewProject
ES_Select
ES_Auto
ES_StartSeq
ES_Stop
ES_QUIT
ES_GetValue
ES_PutValue
ES_FGcommand
ES_PanelClose

ES_Record
ES_Pause
ES_Jog
ES_Shuttle
ES_InitRecord
ES_InitPlay
ES_Main2Blank

equ
equ

equ

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ

7

; asks switcher to unload crouton from memory

; asks switcher to load crouton datal is pointer

; to disk file name.

; make a duplicate of the crouton. Datal is a pointer
; to the crouton to duplicate

: Datal is filename Data2 is mode

; Datal is filename or Null for current file

; Datal is filename of new file

; Datal is FG to get FGC_SELECTQ

; Datal is FG to get FGC_AUTO

; used to stop playing/recording clips & sequencing
; Tells the Editor to quit = F8

; Gets value out of taglist

; Puts value into taglist

; Sends a specific FGC command to crouton

; Called when control panel is closed. Was
:ES_HiliteCrouton

; (>name, fields, ->StartFunct, ->StopFunct, Flags)
; (PauseFlag)

; (RenderCallBack)

; (RenderCallBack)

R

ES_GUImode equ 29
ES_SelectDefault equ 30
ES_Jump equ 31
ES_ApplyTags equ 32
ES_TagSize equ 33
ES_GetTable equ 34
ES_PutTable equ 35
ES_LightWave equ 36
ES_ToasterPaint equ 37
ES_ToasterCG equ 38
ES_ChromaFX equ 39
ES_FlyerDrivelnfo equ 40
ES_RecordSource equ 41
ES_CompressionMode equ 42
ES_CheckRecord equ 43
ES_DefragFlyer equ 44
ES_StartHeadList equ 45
ES_MakeClipHead equ 46
ES_EndHeadList equ 47
ES_MakeClipIcon equ 48
ES_FlyerClipInfo equ 49
ES_AppendIcon equ 50
ES_Hack equ 51
ES_BuildVolumeTable equ 52
ES_GetPrefs equ 53
ES_SetPrefs equ 54
ES_LoadedSlices equ 55
ES_UnSavable equ 56
ES_NewFieldCount equ 57
ES_SavePrefs equ 58
ES_StartClipCutList equ 59
ES_AddClipCut equ 60
ES_EndClipCutList equ 61
ES_AudioControl equ 62
ES_ChangeAudio equ 63
ES_LocateFile equ 64
ES_FoundFile equ 65
ES_SwitcherRAWKEY equ 66
ES_RecordAppend equ 67
W

* ESMessage.Reply
ES_ERR_NONE equ O
ES_ERR_GENERIC equ 1

ENDC ; EDIT_SWIT_I

; Project/Switcher, Project/Files etc.

; Select internal default effect (fade)

; (FG.field)

; (FGsource, FGdestination)

; (FG, TagID)

; (FG, ->Table, TableSize, TagID)

; (FG, ->Table, TableSize, TagID)

; (FGC_Command)

; (FGC_Command)

; (FGC_Command)

; (FGC_Command)

; (->volumename, ->FlyerVollInfo or NULL)
; (VideoSource)

; (mode)

; (), returns FERR_..., O if recording finished OK
; (>volumename)

;0
; (->name, VidStart, VidFields,AudStart, AudFields)

0

; (->name,->crud,crudsize,field)

; (->clipname, ->ClipInfo or NULL)

; (->name)

; CName’,->HackStructure)

; () returns ->table of Flyer Volumes & Type

; (->SystemPrefs Structure) fill in current values

; (->SystemPrefs Structure)

; () returns Slice Mask (see tags.i for bits)

;(FG, TagID);marks Tag item so it doesn’t get saved in the
;project

;(FG);This needs to be called if a Current FXs speed or
;duration has changed.

;) saves an HS file. Returns ERROR. Though we usually
;ignore errors!

;(->filename, DestructFlag)

;(->filename, StartField, NumFields, VidAudFlags)
;(DoltFlag)

;(->FlyAudCtrl, operationFlags)

;(->FG) Use this to modify the currently playing clip
;(Type,->Name,flags,->textarray,mode)
;(Type,->Name,flags,->textarray,mode)

;(Code,Qualifier)

; (->name, fields)

; unable to complete requested action

A

.-u...._.:--..._._"-:t._._._.-._.- B -...._._.n._.-uu Ik -

...._._.-u._._.n.-.-.-s_.r_._..__.-l...-..-- M LHdfd | i _ o

mm__ :mﬁ ” . ___H_m%w ﬂ

:
1 i

W =l B4R LA

-|_'.-||.-:
n—.ﬁ—ﬂ_-.-I
H'-

Toaster/Switcher ARexx Documentation

Video Toaster Switcher Arexx Manual 4/20/95

**

Update for 4.04 on 6/6/95 - D. Wolf

See changes to following functions:

FMLD, FMSV - Framestore load and save by filename instead of xxx.FS.yyyy
GROF, GRON - Error checked for validity. '

QUIT - Disabled for now - broken!

DOEN - Fixed

A number of functions have been REMOVED! They are meaningless in the new Toaster/Flyer
software environment (releases >3.5). The removed functions could have been potentially
harmful if run. As a reminder to all you ARexx programmers to CHANGE your programs, all
these functions now return an ARexx 10" error code - likely to stop your ARexx script dead so
you’ll notice them and change your programs! Calling these removed functions is completely
harmless now, but you’ll just get ARexx error returns from them anyhow.

Docs for some of these functions were correctly removed from this file some time ago, but the
functions were still there and dangerous. The 27 REMOVED functions are:

PAGE, BKLD

CHGR, CKGD, RDGD, WTGD

PJLD, PICK, PIDV, PISV, PIDL, PIRN, PIXI, PINM, PIMK, PIBD
FSDV, FSNM, FSMK, FSCK, FSBD, FSCT

FMDL, FMRN, FMXI

KEYP, KEYN

For example, CHGR used to let you select a different effects ’grid’ - complete nonsense in the
newer Toaster/Flyer environment.

Note about ARexx: The Video Toaster is compatible with the ARexx programming
language. However, due to the complex and technical nature of programming, users of
ARexx cannot be supported by NewTek Technical Support. Its inclusion is intended
primarily for developers, programmers, and advanced users who are familiar and
comfortable with programming concepts. Commands are subject to change without prior
notice.

The Switcher Arexx interface has been implemented as a function host, rather than the more
common command host interface (e.g. ToasterPaint). Arexx function hosts are initialized using
the addlib() function with the name of the host or library. The name of the switcher host is
'ToasterARexx.port’ and it is case-sensitive. ARexx messages sent to the Switcher must be in
function call format. This means that all commands must be given as arguments to the
function Switcher(), rather than being sent as direct commands to an ARexx command host. If
the switcher command has any parameters, then they too must be given as arguments to
Switcher() or the command will fail. Furthermore, all parameters should be uppercase.
Unless otherwise noted, all function commands return 0 if they were sucessfully executed, and 10
if a failure occurred. ARexx messages will only be accepted and processed when the main
Switcher control panel is active. At other times, ARexx messages will be accepted and will
remain in the Switcher's ARexx message port queue until the primary switcher control panel is
active, at which point they should execute (don’t count on it - put the Switcher screen up!).

1

Most of the commands that directly impact the Switcher will also show up on the Switcher
interface. Almost all ARexx commands that impact the Switcher behave exactly like their
corresponding manual user interface functions from the Switcher interface. In particular, they are
restricted by the active controlling effect as to whether or not their requested function will be
granted. If an ARexx command function is aborted by a controlling effect, an OK return code
may still be returned. In the case of a failure code, the current Switcher settings remain
unchanged.

Arexx Command Set:

Switcher(AUTO)
This command will invoke an AUTO transition.

Switcher(UATO)
This command performs an un-auto, the equivalent of a Shift-Spacebar action to reverse
a partially transitioned effect back off screen.

Switcher(TBAR, <TBar level>)
This command will invoke a TBar jump movement to the specified level (0-511). A
failure code will be returned if the level argument is invalid.

Switcher(TAKE)
This command will invoke a TAKE.

Switcher(SLOW)

Switcher(MEDM)

Switcher(FAST)

Switcher(SVAR)
The above commands set the speed active for the transition that is currently in effect.
SVAR sets the effect to the last duration chosen with the variable speed selector. You
MUST make sure the effect supports variable speeds bad thin gs can and WILL happen.

Switcher(NOPR)
This command is a NOP.

Switcher(FRES)
This command resets the frame base count to the moment this command was processed.

Switcher(WAIT, <Frame count> or GPI)

This command can wait for either a specified frame count or for a GPI trigger. If '"GPI’
is the specified argument, this function will wait for a GPI trigger to occur before
continuing. The trigger can be either a positive or negative trigger. In the case of GPI
triggering being disabled, this function will become a NOP. If *GPI’ is not the
specified argument, then the argument is assumed to be a digit field specifying a frame
count. In this case the command will wait until the specified frame count from the last
frame base count is reached. In the case of specified frame count already exceeded, this
function will return immediately.

Switcher(CLIP, <Clip level>)
This command will invoke a Clip jump movement to the specified level (0-257). A
failure code will be returned if the level argument is invalid.

Switcher(KEYM)
This command toggles the current key mode state of the Switcher.

2

Switcher(M0O1)
Switcher(M002)
Switcher(M003)
Switcher(M004)
Switcher(MDV1)
Switcher(MDV?2)
Switcher(MBKG)
The above commands select the specified video source for the Main output.

Switcher(POO1)
Switcher(P002)
Switcher(PO03)
Switcher(P0O04)
Switcher(PDV1)
Switcher(PDV2)
Switcher(PBKG)
The above commands select the specified video source for the Preview output.

Switcher(O001)
Switcher(0002)
Switcher(O003)
Switcher(0004)
Switcher(ODV1)
Switcher(ODV2)
Switcher(OBKG)
The above commands select the specified video source for the Overlay output.

Switcher(GOCG)

Switcher(GOLD)

Switcher(GOSA)
These commands are now obsolete. They have been left in for compatibility reasons,
but they do nothing.

Switcher(STAT,<Command>)

This command returns information about the status of the Switcher. The return value

depends on which command is used. The possible commands are:

MAIN Return status of the Program (main) row. The binary representation of the
number returned will have a bit set for which input is selected on the Program
row. Thus if input 1 is selected, the number returned will be 1 (binary
00000001). Similarly, input 3 would yield 8 (binary 00000100), DV2 would
yield 64 (binary 00100000), as it is the sixth button on the row, and fills only
the sixth bit (from the right) in the binary rep. of the returned value.

PREV Return status of the Preview row in the same format as MAIN

OVLY Return status of the Overlay row in the same format as MAIN

FREZ Return status of the Freeze button: O for live video, ~0 for frozen video

TEXT Return contents of popup menu in quick access panel

TBAR Return T-Bar position (0-511)

KEYM Return Key Mode "BLACK’, "WHITE’, or ’OFF’)

3

CLIP
SPED

FCNT
KNUM
FXNM
INFO
BACK
BORD
TERM

SGPI
FACE

Return clip level (0-257, 0 and 257 are off)

Return current speed setting. The number returned is a 16-bit value whose
lowest 2 bits indicate which preset speed is in effect (M=00, F=01, V=10, and
S=11). The remaining 14 bits will hold the variable speed. If the 16 bit value
is all 1s or Os (i.e. -1 or 0), it means variable speeds won’t work with that
particular effect.

Return frame count for current effect (0-9999 frames)

Return number in quick access panel

Return the effect name for the current effect

Current numeric keypad selection (SA, LD, CG).

Current Background color

Current Border color

Current termination settings returned as a number whose lowest 4 bits
represent the state of the four input terminators (input 4 is least significant bit,
input1 most significant bit).

Current GPI mode (POS,NEG,OFF)

Number of monitors (2 or 3)

Switcher(FMLD,volume:filename)
This command loads the contents of the frame buffer selected on the preview bus from
the named volume:filename.

Switcher(FMSV,volume:filename,0) 1-field save
Switcher(FMSV,volume:filename,1) 1-field save
Switcher(FMSV,volume:filename,4) 4 field save
Switcher(FMSV,volume:filename,5) 4 field save
Switcher(FMSV,volume:filename,xxx) 4 field save
Switcher(FMSV,volume:filename) 4 field save

This command saves the contents of the frame buffer selected on the preview bus to the named
volume:filename. If the last argument is O or 1, only 1 field of video will be saved. If the 3rd
argument is NOT O or 1, or is absent, a standard 4-field save will occur.

Note: this will save the framestore in the format volume:filename. This command used to use a 0
to denote a 1-field save, now it uses 1 instead. Anything other than a 1 will cause a 4-field save.

Switcher(TOWB)
This command will pop the WorkBench screen up to the front and disables the
Switcher/Toaster system. This function will return a failure code if WorkBench could

not be opened.

Switcher(TOSW)
This command will pop the Switcher screen up to the front and enable the

Switcher/Toaster system.

<

Switcher(QUIT)
This command will completely shut down the Switcher/Toaster system upon its arrival. All
Switcher/Toaster resources will be freed and the program exited.
NOTE: This command IS BROKEN!!!

Switcher(BACK , <Index # or -1> [, <Custom BG color>])
This command will select the specified matte (background) color either from indexing the
current config slice matte color FGs (0-8) or a specified custom matte color if the index is
specified as -1. Custom color specifications have a valid range of 0-4096. If you want to
directly specify snow, specify your custom color as a negative 16 bit word value.

Switcher(BORD , <index #>)
This command will select the specified border color via the index specified for the current
config slice border color FGs (0-7).

Switcher(KOFF)

Switcher(KBLK)

Switcher(KWHT)
The above commands forces the Key mode to be off, on with black enabled, and on with
white enabled respectively. Issuing this command does not guarantee that the key mode
will be forced to the desired mode. If it doesn’t work, the function will return a failure
code.

Switcher(LVID)

Switcher(FVID)
The above commands forces the Video mode to be live or frozen respectively. Issuing this
command does not guarantee that the video mode will be forced to the desired mode. If it
doesn’t work, the function will return a failure code.

Switcher(NOMO)
The above command does a frame capture along with motion removal.

Switcher(SGPI, <OFF| POS| NEG>)
The above command sets up the Switcher GPI trigger system. 'OFF’ disables the system,
"POS’ enables the system for positive GPI triggers, and 'NEG’ enables the system for
negative GPI triggers. The changes to the Switcher GPI trigger system made by this
function WILL NOT be reflected in the HardSets file. Tech note: GPI input occurs on pin
6 of the second gameport (bit 7 of CIAA port A).

Switcher(DISW)

Switcher(ENSW)
The above commands are for disabling/enabling return of control from the ARexx
environment back to the Switcher. The primary use of these commands is in running the
Switcher entirely from ARexx scripts without allowing input from the Switcher interface
(keyboard, mouse, etc.) to interfere with the execution of the ARexx script. Only
diskchanges will still be processed.

Switcher(DIIM)

Switcher(ENIM)
The above commands are for disabling/enabling rendering, the SoftSprite system, and the
mouse and keyboard IDCMP. These calls can be used to speed up the processing of ARexx
switcher commands at the expense of visual feedback of the transition. When enabled, the
Switcher display will be completely redrawn.

5

Switcher(MEMC ,’L’)
The above command returns the amount of free CHIP memory or the largest CHIP chunk if
the L’ option is used. This command is ARexx dependent.

Switcher(MEMF ,’L’)
The above command returns the amount of free FAST only memory or the largest FAST
only chunk if the 'L’ option is used. This command is ARexx dependent.

Switcher(CKTP)

Switcher(CKCG)

Switcher(CKLW)
The above commands check for the existence of ToasterPaint, CG, and LightWave
respectively. They return a 1 if the program entity is currently loaded and O if not. These
commands are ARexx dependent.

Switcher(LDTP)

Switcher(LDCG)

Switcher(LDLW)
The above commands attempt to load ToasterPaint, CG, or LightWave respectively if those
program entities are not already loaded. These commands can be dangerous if the load fails
and a requester comes up, hanging ARexx.

Switcher(DPTP)

Switcher(DPCG)

Switcher(DPLW)
The above commands will unload ToasterPaint, CG, or LightWave respectively if those
program entities are loaded.

Switcher(STTP)
This command will enter ToasterPaint if and only if it is currently active, otherwise this
command is a NOP. Once entering ToasterPaint, your ARexx message will not be returned
until ToasterPaint exits back to the Switcher. So be careful that you don’t hang yourself.

Switcher(OGPI)
This command causes an output GPI trigger to occur in accordance to the current settings
of the GPI system. This command is a NOP if GPI triggering is disabled. Tech note: GPI
output occurs on pin 9 of the second gameport (potentiometer circuit).

Switcher(TERM, <mask>)
This command sets the termination for the four video inputs. The mask will be a number
from O to 15 whose bits (0-3) control the termination setting for inputs 1-4.

Switcher(SRGB, <filename>,<field>,<bank>)
This command saves the contents of one of the digital video buffer to a standard IFF24 type
rgb file. The filename should include the complete file path. The bank argument should be
0 for DV1 and 1 for DV2. Field selects which of the 4 fields (0-3) of video stored in the
frame buffer should be saved. Setting field to 4 will initiate motion removal and save 2
fields. Setting field to 5 will save a full 4-field ’color frame’. This is the best quality save.
NOTE: Not all of these settings are currently implemented .

Switcher(LRGB,<filename>,<bank>)
This command loads an RGB image into the specified digital video buffer. The filename
should include the complete file path. The bank argument should be O for DV1 and 1 for
DV2.
Note: This feature will load framestores as well.

6

Switcher(FACE,<monitors>)
This command sets the interface to 2 monitor or 3 monitor mode, when monitor is 2 or 3
respectively.

Switcher(GROF)

This command turns off the image hilighting system and software mouse pointer. Each call
to this function MUST be matched with exactly one (1) call to the GRON function. After
this call no interface elements will be hilighted. The function returns a pointer to the bitmap
structure used by the screen.

NOTE: Now (>4.03) checks to see if image hilighting is ALREADY off and just returns if
that is so. If GROF really happens (if image hilighting is ON when you call GROF) then
you will get the pointer to the bitmap structure of the screen as a return value. If GROF
doesn’t happen because hilighting is ALREADY off, you will get a return value of 0
instead of the bitmap structure pointer value.

Switcher(GRON)

This command turns on the image hilighting system and software mouse pointer after a
GROF. Each call to this function MUST be matched with exactly one (1) prior call to the
GROF function.

NOTE: Now (>4.03) checks that image hilighting is indeed OFF before doing anything. If
image hilighting is OFF when you call GRON then GRON will turn it back ON. If image
hilighting is already ON when you call GRON, then it does nothing (but reports no error,
either).

*l
£

Toaster/Flyer Project File Format
by Steve Kell
purloined from Instinct.i - 12/8/94

33k 3 3k e e e 3 ol ke e ke e e ke ke e e e S e ke 3 3k sk sk ke ok 3k sk s ke e ke e 3 ke e ke s 3k sk ol ke ke 3 sk aheske e e 3k S s ol 3k e e e e sfe ke 3K ek

* As of 12-6-94 the format for our Project files is as follows:
%

dc.b "Project’,0 ;=dc.]1 #’Proj’ + dc.]1 #’ect’<<8 = File identifier
del O ;version & revision (0= 4.0)
de.l 0,0,0,0 ;pads for future expansion

dc.] TagListSize ;size of following System tags (including NULL)
TagList ;A Null terminated tag list of system tags
;Currently, only supporting TAG_LoadedSlices.

TBProjectEntry ;Entry for 1st crouton in project
TBProjectEntry ;Entry for 2nd crouton in project
etc.

XX X X X X X X X X X ¥ X % ¥

OL ;NULL LONG to mark end of project entries

33k e ke e e 3k 3k obe ke 3 e 3 e ke ke sk e 3k b b e e sk ahe ol ofe ke o 3 e sfe e e e 3k b she e 2k e ok o sk ok e sk Bk sk sk ke e sk ke ke ek sk sk Sk sk ke sk Sk sk

* DOC NOTE: The FG_IndexID field of a ToolBox FastGadget is entrusted to provide information *
on the position of the TB FG in a ToolBox display grid as well as the sequence position of the *
particular TB FastGadget in the total ToolBox FastGadget project.

* Addendum 9/18/89: The following represents a file memory image of an entry structure of a TB *
FastGadget (both external and internal types) in a project script to load/save ToolBox FastGadgets *
to/from disk. Has quite a bit of a direct relationship to some of the ToolBox FastGadget extensions *
mentioned just above.

STRUCTURE TBProjectEntry,0

LONG TBPE_EntrySize ;0=end of file, EVEN size!!!
; (all bytes upto next entry, not including these 4)

LABEL TBPE_EntryData

LONG TBPE ObjectType
LONG TBPE_ObjectVersion

LONG TBPE pad0
LONG TBPE padl
LONG TBPE pad2
LONG TBPE pad3

* could put new parameters here, if you didn’t mind breaking old projects
WORD TBPE_FileNameSize ;pad to an EVEN size!!!!
LABEL TBPE FileName ;Null terminated file name.

; Defaults to Effects drawer, but may
; contain a full path.

* dc.b ’name here’,0

*

*

CNOP 0,2
LABEL TBPE Parameters

* A "Special TAG list" will follow the filename. The project loader only uses the TBPE_EntrySize, *
so this data doesn’t need to be a TAG list, but could be any block of memory of size *
TBPE_EntrySize-(TBPE_Parameters-TBPE IndexID).

* Example:

*
%
*

*

*

ULONG FGStagID_MatteColor;
ULONG FGStagSZ MatteColor;Length of MatteColor EVEN SIZE
UWORD. ;MatteColor value

ULONG FGStagID_FCountMode;
ULONG FGStagSZ_FCountMode;Length of FCountMode EVEN SIZE
UWORD. :FCountMode value

ULONG FGStagID IndexID; the FG_IndexID for the ToolBox FG -

ULONG FGStagSZ_IndexID; determines the placement of the
UWORD . ;ToolBox FastGadget

etc.
ULONG 0 ;end of tag list

